

Proteus Multi-Channel
Triggering -

Application Note
Rev. 1.0

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 2

Warranty Statement
Products sold by Tabor Electronics Ltd. are warranted to be free from defects in workmanship or materials.
Tabor Electronics Ltd. will, at its option, either repair or replace any hardware products which prove to be
defective during the warranty period. You are a valued customer. Our mission is to make any necessary
repairs in a reliable and timely manner.

Duration of Warranty
The warranty period for this Tabor Electronics Ltd. hardware is one year, except software and firmware
products designed for use with Tabor Electronics Ltd. Hardware is warranted not to fail to execute its
programming instructions due to defect in materials or workmanship for a period of ninety (90) days from
the date of delivery to the initial end user.

Return of Product
Authorization is required from Tabor Electronics before you send us your product for service or
calibration. Call your nearest Tabor Electronics support facility. A list is located on the last page of this
manual. If you are unsure where to call, contact Tabor Electronics Ltd. Tel Hanan, Israel at 972-4-821-3393
or via fax at 972-4-821-3388. We can be reached at: support@tabor.co.il

Limitation of Warranty
Tabor Electronics Ltd. shall be released from all obligations under this warranty in the event repairs or
modifications are made by persons other than authorized Tabor Electronics service personnel or without
the written consent of Tabor Electronics.
Tabor Electronics Ltd. expressly disclaims any liability to its customers, dealers and representatives and to
users of its product, and to any other person or persons, for special or consequential damages of any kind
and from any cause whatsoever arising out of or in any way connected with the manufacture, sale,
handling, repair, maintenance, replacement or use of said products. Representations and warranties
made by any person including dealers and representatives of Tabor Electronics Ltd., which are inconsistent
or in conflict with the terms of this warranty (including but not limited to the limitations of the liability of
Tabor Electronics Ltd. as set forth above), shall not be binding upon Tabor Electronics Ltd. unless reduced
to writing and approved by an officer of Tabor Electronics Ltd. This document may contain flaws,
omissions, or typesetting errors. No warranty is granted nor liability assumed in relation thereto. The
information contained herein is periodically updated and changes will be incorporated into subsequent
editions. If you have encountered an error, please notify us at support@taborelec.com. All specifications
are subject to change without prior notice. Except as stated above, Tabor Electronics Ltd. makes no
warranty, express or implied (either in fact or by operation of law), statutory or otherwise; and except to
the extent stated above, Tabor Electronics Ltd. shall have no liability under any warranty, express or
implied (either in fact or by operation of law), statutory or otherwise.

Proprietary Notice
This document and the technical data herein disclosed, are proprietary to Tabor Electronics, and shall not,
without express written permission of Tabor Electronics, be used, in whole or in part to solicit quotations
from a competitive source or used for manufacture by anyone other than Tabor Electronics. The
information herein has been developed at private expense and may only be used for operation and
maintenance reference purposes or for purposes of engineering evaluation and incorporation into
technical specifications and other documents, which specify procurement of products from Tabor
Electronics.

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 3

Document Revision History

Table 1.1 Document Revision History

Revision Date Description Author

1.0 9-Apr-2024 • Original release. Saeed Ghanem

Acronyms & Abbreviations

Table 1.2 Acronyms & Abbreviations

Acronym Description

µs or us Microseconds

ADC Analog to Digital Converter

AM Amplitude Modulation

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

AWG Arbitrary Waveform Generators

AWT Arbitrary Waveform Transceiver

BNC Bayonet Neill–Concelm (coax connector)

BW Bandwidth

CW Carrier Wave

DAC Digital to Analog Converter

dBc dB/carrier. The power ratio of a signal to a carrier signal, expressed in decibels

dBm Decibel-Milliwatts. E.g., 0 dBm equals 1.0 mW.

DDC Digital Down-Converter

DHCP Dynamic Host Configuration Protocol

DSO Digital Storage Oscilloscope

DUC Digital Up-Converter

ENoB Effective Number of Bits

ESD Electrostatic Discharge

EVM Error Vector Magnitude

FPGA Field-Programmable Gate Arrays

GHz Gigahertz

GPIB General Purpose Interface Bus

GS/s Giga Samples per Second

GUI Graphical User Interface

HP Horizontal Pitch (PXIe module horizontal width, 1 HP = 5.08mm)

Hz Hertz

IF Intermediate Frequency

I/O Input / Output

IP Internet Protocol

IQ In-phase Quadrature

IVI Interchangeable Virtual Instrument

JSON JavaScript Object Notation

kHz Kilohertz

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 4

Acronym Description

LCD Liquid Crystal Display

LO Local Oscillator

MAC Media Access Control (address)

MDR Mini D Ribbon (connector)

MHz Megahertz

MIMO Multiple-Input Multiple-Output

ms Milliseconds

NCO Numerically Controlled Oscillator

ns Nanoseconds

PC Personal Computer

PCAP Projected Capacitive Touch Panel

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PRBS Pseudorandom Binary Sequence

PRI Pulse Repetition Interval

PXI PCI eXtension for Instrumentation

PXIe PCI Express eXtension for Instrumentation

QC Quantum Computing

Qubits Quantum bits

RADAR Radio Detection And Ranging

R&D Research & Development

RF Radio Frequency

RT-DSO Real-Time Digital Oscilloscope

s Seconds

SA Spectrum Analyzer

SCPI Standard Commands for Programmable Instruments

SFDR Spurious Free Dynamic Range

SFP Software Front Panel

SMA Subminiature version A connector

SMP Subminiature Push-on connector

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TFT Thin Film Transistor

T&M Test and Measurement

TPS Test Program Sets

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VCP Virtual COM Port

Vdc Volts, Direct Current

V p-p Volts, Peak-to-Peak

VSA Vector Signal Analyzer

VSG Vector Signal Generator

WDS Wave Design Studio

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 5

Contents

Document Revision History ...3
Acronyms & Abbreviations ..3
Contents ...5
Figures ..5
Tables ...5
1 About this Application Note ...6

1.1 Related Documentation ... 6
2 Trigger all Proteus Channels Simultaneously ..7

2.1 Introduction .. 7
2.2 Trigger Sources ... 7

 External Source ... 7
 Internal Source .. 7
 CPU Source .. 7

2.3 Trigger Modes in Proteus ... 7
3 How it Works? ...9

3.1 Arbitrary Mode ... 9
3.2 Task Table Mode .. 9

4 Setup .. 11
5 Python Sample Scripts ... 12

5.1 Arbitrary Mode ... 13
5.2 Task Table Mode .. 14

Figures

Figure 4.1 PXE6410 6 Slot PXIe Chassis with Proteus PXIe Module Setup Arbitrary Mode.................. 11
Figure 5.1 Python Script Attachment .. 12
Figure 5.2 SCPI Commands for Triggering All Channels Arbitrary Mode .. 13
Figure 5.3 SCPI Commands for Triggering All Channels- Task mode .. 15

Tables

Table 1.1 Document Revision History ... 3
Table 1.2 Acronyms & Abbreviations .. 3

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 6

1 About this Application Note
This application note explains how to trigger all Proteus channels simultaneously.

1.1 Related Documentation

• Proteus Series Arbitrary Waveform Transceiver Programming Manual

• Proteus Module User Manual

• PXE6410 User Manual

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 7

2 Trigger all Proteus Channels
Simultaneously

2.1 Introduction

While the Proteus system offers versatile waveform creation capabilities these would not be very effective
without the ability to tightly control when and how the waveforms start and stop. For this purpose, the
Proteus system offers an extremely flexible and sophisticated triggering system that controls the start and
stop of the waveforms. The Proteus AWG responds to various trigger sources such as: external trigger
signal from the TRIG1 And TRIG2 inputs, Internal trigger generator with programmable trigger period, and
BUS trigger for triggering via the controlling PC using software commands. The trigger source level for
TRIG 1 and TRIG 2 inputs is programmed per trigger source and is common to all channels. All other trigger
source attributes are independent and can be different for each channel. This means that users can set
different trigger parameters for each channel on the same trigger input. In addition, trigger signals are
used to both enable and abort waveform or task generation.

2.2 Trigger Sources

 External Source

An external trigger is a signal sourced from outside the instrument itself, which initiates a specific action
or response within the instrument's circuitry. These triggers can originate from a diverse array of sources,
including external sensors, signal generators, or even other instruments within a test setup.

 Internal Source

An internal trigger is a signal generated within the instrument itself that initiates a specific action or
response. From capturing waveforms on an oscilloscope to triggering measurements on a spectrum
analyzer, internal triggers serve as the guiding force, ensuring that critical events are detected and
processed with precision.

 CPU Source

A CPU trigger is a command or event generated by the CPU itself that initiates a specific action or response
within the instrument's circuitry. As the computational powerhouse of the instrument, the CPU leverages
its processing capabilities to detect, analyze, and act upon incoming signals or stimuli with remarkable
speed and accuracy.

2.3 Trigger Modes in Proteus
The options for triggering all channels simultaneously are by a CPU or External trigger. Internal trigger works with
each channel individually.

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 8

Note
If you work with a CPU trigger, you need to define the SCPI value as INT and not CPU.

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 9

3 How it Works?
To trigger all channels simultaneously you need to send some SCPI commands to the Proteus. The trigger
can work in arbitrary or task table mode.

3.1 Arbitrary Mode

In arbitrary mode the waveforms that are stored in the memory can be generated one at a time by
selecting the segment to be generated. This mode is used when there is no prior knowledge of the order
in which the segments should be generated. The selection can be done either by a software command or
by external signal if the DJ option is installed. For a detailed explanation on Arbitrary mode refer to the
“Proteus Module User Manual”.
You can choose which trigger source you want to use, CPU or EXTERNAL.
To trigger all channels simultaneously follow the following instructions:

1. First, you need to connect to your unit.
2. Download your waveforms to the relevant channels.
3. Turn off the continuous mode for each channel.

inst.send_scpi_cmd(':INIT:CONT OFF')

4. Define the triggers for all channels.

Example

If you choose an EXTERNAL trigger source replace INT with: TRG1 or TRG2.

inst.send_scpi_cmd(':INST:CHAN 1')

inst.send_scpi_cmd(':TRIG:COUP ON')

inst.send_scpi_cmd(':TRIG:SOUR:ENAB INT')

inst.send_scpi_cmd(':TRIG:SEL INT')

inst.send_scpi_cmd(':TRIG:STAT ON')

The CPU trigger must be sent when channel 1 is activate, after that you need to send the following SCPI
commands:

inst.send_scpi_cmd(':INST:CHAN 1')

inst.send_scpi_cmd(':TRIG:CPU:MODE GLOBAL')

Now, you can send a trigger using the SCPI command:

inst.send_scpi_cmd('*TRG')

3.2 Task Table Mode

When the Proteus device is set to task mode, the waveforms are generated according to the task table.
The task table is made up of different tasks. Each task in the task table contains multiple parameters, such
as enable signal, abort signal, and jump condition that define the trigger functionality for the given task.
To trigger all channels simultaneously you must choose one of two trigger sources: CPU or EXTERNAL. For
a detailed explanation on Task mode refer to the “Proteus Module User Manual”.

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 10

External

To work with External trigger, a valid trigger signal must be connected to one of the two external trigger
inputs. In addition, the first task of all channels must be set to have an enable signal, in the example, TRG1.

CPU

To work so that a single CPU trigger triggers multiple channels, the instrument must be configured so
that the internal trigger path is used to transfer the CPU trigger to all channels as follows:

1. Send the SPI command: “:TRIG:COUPLE ON” , this will configure the instrument so that a trigger
sent to CH1 is transferred to all channels.

2. Select CH1 as the active channel
3. Send a *TRG

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 11

4 Setup
The picture below shows the setup of Arbitrary mode.

Figure 4.1 PXE6410 6 Slot PXIe Chassis with Proteus PXIe Module Setup Arbitrary Mode

1. Connect all the Proteus output channels to the oscilloscope input channels.
2. If you use an External trigger connect it to the input TRG1 or TRG2 on the unit.
3. Connect your control PC to the Proteus.
4. Send the Figure 5.2 Python sample script to your Proteus

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 12

5 Python Sample Scripts
The Python scripts are provided as attachments.

Note

You should open the PDF file using the free Adobe reader. It can be downloaded from
https://get.adobe.com/reader/. As an alternative, you can also download the scripts from
the Tabor download site at https://www.taborelec.com/Downloads.

1. Click the “paper clip” icon in the attachment pane.
2. Right-click the file and select “Save Attachment…” to download the file.

Figure 5.1 Python Script Attachment

https://get.adobe.com/reader/
https://www.taborelec.com/Downloads

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 13

5.1 Arbitrary Mode

The following partial script will help you to understand the details deeply. The SCPI commands used in the
Python script are using the Jupyter Notebook.

Figure 5.2 SCPI Commands for Triggering All Channels Arbitrary Mode

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 14

5.2 Task Table Mode

The following partial script is an example of how to trigger multiple channels in Task mode either with
external or CPU trigger. The SCPI commands used in the Python script are using the Jupyter Notebook.

Proteus Multi-Channel Triggering - Application Note Rev. 1.0

Confidential | 15

Figure 5.3 SCPI Commands for Triggering All Channels Task mode

	Proteus Multi-Channel Triggering - Application Note
	Document Revision History
	Acronyms & Abbreviations
	Contents
	Figures
	Tables
	1 About this Application Note
	1.1 Related Documentation

	2 Trigger all Proteus Channels Simultaneously
	2.1 Introduction
	2.2 Trigger Sources
	2.2.1 External Source
	2.2.2 Internal Source
	2.2.3 CPU Source

	2.3 Trigger Modes in Proteus

	3 How it Works?
	3.1 Arbitrary Mode
	3.2 Task Table Mode

	4 Setup
	5 Python Sample Scripts
	5.1 Arbitrary Mode
	5.2 Task Table Mode

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "2f3f37b2",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Import required Libraries\n",
 "import os\n",
 "import sys\n",
 "import tempfile\n",
 "import webbrowser\n",
 "srcpath = os.path.realpath('SourceFiles')\n",
 "sys.path.append(srcpath)\n",
 "from teproteus import TEProteusAdmin as TepAdmin\n",
 "from teproteus import TEProteusInst as TepInst\n",
 "from teproteus_functions_v3 import connect\n",
 "from teproteus_functions_v3 import disconnect\n",
 "from teproteus_functions_v3 import set_lib_dir_path\n",
 "from teproteus_functions_v3 import get_cpatured_header\n",
 "from teproteus_functions_v3 import gauss_env\n",
 "from teproteus_functions_v3 import iq_kernel\n",
 "from teproteus_functions_v3 import pack_kernel_data\n",
 "from teproteus import TEProteusAdmin, TEProteusInst\n",
 "from tevisainst import TEVisaInst\n",
 "#matplotlib notebook\n",
 "import numpy as np\n",
 "import time\n",
 "import ipywidgets as widgets\n",
 "from IPython.core.debugger import set_trace\n",
 "from scipy.signal import chirp, sweep_poly\n",
 "import matplotlib.pyplot as plt\n",
 "plt.style.use('ggplot')\n",
 "from scipy import signal\n",
 "import math\n",
 "import pdb"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "153769bf",
 "metadata": {},
 "outputs": [],
 "source": [
 "## Connect to instrument\n",
 "connection = 'LAN'\n",
 "if connection == 'PXI': \n",
 " # not setting this command means DLL are taken from SYS32\n",
 " #set_lib_dir_path(r'D:\\Projects\\ProteusAwg_Anabelle\\x64\\Debug') \n",
 " # for service connection enter instrument IP\n",
 " # for PXI DLL connection enter the module slot number with Auto=False\n",
 " # when Auto=True the lowest module will be connected\n",
 " inst=connect(\"6\",Auto=False)\n",
 " \n",
 "elif connection == 'LAN':\n",
 " proteus_addr = 'TCPIP::192.168.0.89::5025::SOCKET'\n",
 " try:\n",
 " inst = TEVisaInst(proteus_addr)\n",
 " except TEVisaInst.Error as ex1:\n",
 " print('Couldn\\'t connect to \\'%s\\', exiting now...' % proteus_addr)\n",
 " sys.exit()\n",
 " \n",
 "elif connection == 'USB':\n",
 " proteus_addr = 'USB0::0x2A8D::0x900E::MY55490134::INSTR'\n",
 " try:\n",
 " inst = TEVisaInst(proteus_addr)\n",
 " except TEVisaInst.Error as ex1:\n",
 " print('Couldn\\'t connect to \\'%s\\', exiting now...' % proteus_addr)\n",
 " sys.exit()\n",
 " \n",
 "elif connection == 'LOCAL':\n",
 " proteus_addr = 'TCPIP::127.0.0.1::5025::SOCKET'\n",
 " try:\n",
 " inst = TEVisaInst(proteus_addr)\n",
 " except TEVisaInst.Error as ex1:\n",
 " print('Couldn\\'t connect to \\'%s\\', exiting now...' % proteus_addr)\n",
 " sys.exit()\n",
 " \n",
 "else:\n",
 " print(\"Please select the conection method first\")\n",
 "# Get the instrument's *IDN\n",
 "resp = inst.send_scpi_query('*IDN?')\n",
 "print('Connected to: ' + resp)\n",
 "inst.default_paranoia_level = 2"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "1f9839a1",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Get the model:\n",
 "model_name = inst.send_scpi_query('SYST:INF:MODel?')\n",
 "print('Model: {0} '.format(model_name))\n",
 "\n",
 "# Get model dependant parameters:\n",
 "if model_name.startswith('P948'):\n",
 " bpp = 2\n",
 " max_dac = 65535\n",
 " wpt_type = np.uint16\n",
 " offset_factor = 1\n",
 "elif model_name.startswith('P908'):\n",
 " bpp = 1\n",
 " max_dac = 255\n",
 " wpt_type = np.uint8\n",
 " offset_factor = 1\n",
 "else:\n",
 " bpp = 2\n",
 " max_dac = 65535\n",
 " wpt_type = np.uint16\n",
 " offset_factor = 2\n",
 " \n",
 "half_dac = max_dac / 2.0 \n",
 "# Get the DAC mode (8 bits or 16 bits)\n",
 "\n",
 "resp = inst.send_scpi_query(':SYST:INF:DAC?')\n",
 "if resp == 'M0': \n",
 " dac_mode=16 \n",
 "else: dac_mode=8\n",
 " \n",
 "print('DAC {0} bits'.format(dac_mode))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "6958ea6a",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Several initializations ..\n",
 "inst.send_scpi_cmd('*CLS; *RST')\n",
 "#inst.send_scpi_cmd(':INST:CHAN 2')\n",
 "inst.send_scpi_cmd(':TRAC:DEL:ALL') # Delete all segments of the programmable channel's DDR.\n",
 "resp = inst.send_scpi_query(':SYST:ERR?')\n",
 "print(resp)\n",
 "# Get number of channels\n",
 "resp = inst.send_scpi_query(\":INST:CHAN? MAX\")\n",
 "print(\"Number of channels: \" + resp)\n",
 "num_channels = int(resp)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "94b82c6d",
 "metadata": {},
 "outputs": [],
 "source": [
 "FREQ = 1000\n",
 "inst.send_scpi_cmd(\":FREQ:RAST {0}MHz\".format(FREQ))\n",
 "resp = inst.send_scpi_query(\":FREQ:RAST?\")\n",
 "freq = float(resp)\n",
 "print (\"DAC Generate Freq:{0}\".format(freq))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "cf03cd0a",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Generate Sine wave on all channels of all modules\n",
 "for i in range(1):\n",
 " inst_sel = i+1\n",
 " inst.send_scpi_cmd(':INST:ACT {}'.format(inst_sel))\n",
 " resp = inst.send_scpi_query(':SYST:ERR?')\n",
 " print(resp)\n",
 " resp = inst.send_scpi_query(':INST:ACT?')\n",
 " print('Instrument {} selceted'.format(resp))\n",
 " seglen = 2048\n",
 " cyclelen = seglen\n",
 " ncycles = seglen / cyclelen\n",
 " waves = [None for _ in range(3)]\n",
 "\n",
 " # sin wave:\n",
 " x = np.linspace(start=0, stop=2 * np.pi * ncycles, num=seglen, endpoint=False)\n",
 " y = (np.sin(x) + 1.0) * half_dac\n",
 " y = np.round(y)\n",
 " y = np.clip(y, 0, max_dac)\n",
 " waves[0] = y.astype(wpt_type)\n",
 " plt.plot(x,y)\n",
 " print(\"************* WAVEFORM*****************\")\n",
 " # Download sine wave to all channels\n",
 " for ii in range(4):\n",
 " ichan = ii\n",
 " channb = ichan + 1\n",
 " segnum = 1\n",
 " wav = waves[0]\n",
 " print('Download wave to segment {} of channel {}'.format(segnum, channb))\n",
 "\n",
 " # Select channel\n",
 " inst.send_scpi_cmd(':INST:CHAN {}'.format(channb))\n",
 "\n",
 " # Define segment\n",
 " inst.send_scpi_cmd(':TRAC:DEF {},{}'.format(segnum, seglen))\n",
 "\n",
 " # Select the segment\n",
 " inst.send_scpi_cmd(':TRAC:SEL {}'.format(segnum))\n",
 "\n",
 " # inst.send_scpi_cmd(':VOLT:OFFS 0.2')\n",
 " # inst.send_scpi_cmd(':VOLT 0.5')\n",
 "\n",
 " # Increase the timeout before writing binary-data:\n",
 " inst.timeout = 60000\n",
 "\n",
 " # Select the segment\n",
 " cmd = ':TRAC:SEL {0}'.format(segnum)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " # Send the binary-data:\n",
 " inst.write_binary_data(':TRAC:DATA', wav)\n",
 " resp = inst.send_scpi_query(':SYST:ERR?')\n",
 " resp = resp.rstrip()\n",
 " if not resp.startswith('0'):\n",
 " print('ERROR: \"{}\" after writing binary values'.format(resp))\n",
 "\n",
 " \n",
 " \n",
 " # Play the specified segment at the selected channel:\n",
 " cmd = ':SOUR:FUNC:MODE:SEGM {}'.format(segnum)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " cmd = ':FUNC:MODE ARB'\n",
 " inst.send_scpi_cmd(cmd)\n",
 " \n",
 " \n",
 " # Turn on the output of the selected channel:\n",
 " inst.send_scpi_cmd(':OUTP ON')\n",
 "\n",
 " resp = inst.send_scpi_query(':SYST:ERR?')\n",
 " print(resp)\n",
 "\n",
 " print()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "3dfc7b7f",
 "metadata": {},
 "outputs": [],
 "source": [
 "#select the programmable channel \n",
 "inst.send_scpi_cmd(':INST:CHAN 1')\n",
 "resp = inst.send_scpi_query(\":INST:CHAN?\")\n",
 "print(\"Selected channel is\" + resp)\n",
 "inst.send_scpi_cmd(':INIT:CONT OFF')\n",
 "# Get the status of contineous mode 1= ON, 0=OFF\n",
 "resp = inst.send_scpi_query(\":INIT:CONT?\")\n",
 "print(\"State of contineous mode is : \" + resp)\n",
 "inst.send_scpi_cmd(':TRIG:COUP ON')\n",
 "inst.send_scpi_cmd(':TRIG:SOUR:ENAB INT')\n",
 "inst.send_scpi_cmd(':TRIG:SEL INT')\n",
 "inst.send_scpi_cmd(':TRIG:STAT ON')\n",
 "inst.send_scpi_cmd(':TRIG:CPU:MODE GLOBAL')\n",
 "\n",
 "inst.send_scpi_cmd(':INST:CHAN 2')\n",
 "resp = inst.send_scpi_query(\":INST:CHAN?\")\n",
 "print(\"Selected channel is\" + resp)\n",
 "inst.send_scpi_cmd(':INIT:CONT OFF')\n",
 "# Get the status of contineous mode 1= ON, 0=OFF\n",
 "resp = inst.send_scpi_query(\":INIT:CONT?\")\n",
 "print(\"State of contineous mode is : \" + resp)\n",
 "inst.send_scpi_cmd(':TRIG:COUP ON')\n",
 "inst.send_scpi_cmd(':TRIG:SOUR:ENAB INT')\n",
 "inst.send_scpi_cmd(':TRIG:SEL INT')\n",
 "inst.send_scpi_cmd(':TRIG:STAT ON')\n",
 "\n",
 "inst.send_scpi_cmd(':INST:CHAN 3')\n",
 "resp = inst.send_scpi_query(\":INST:CHAN?\")\n",
 "print(\"Selected channel is\" + resp)\n",
 "inst.send_scpi_cmd(':INIT:CONT OFF')\n",
 "# Get the status of contineous mode 1= ON, 0=OFF\n",
 "resp = inst.send_scpi_query(\":INIT:CONT?\")\n",
 "print(\"State of contineous mode is : \" + resp)\n",
 "inst.send_scpi_cmd(':TRIG:COUP ON')\n",
 "inst.send_scpi_cmd(':TRIG:SOUR:ENAB INT')\n",
 "inst.send_scpi_cmd(':TRIG:SEL INT')\n",
 "inst.send_scpi_cmd(':TRIG:STAT ON')\n",
 "\n",
 "inst.send_scpi_cmd(':INST:CHAN 4')\n",
 "resp = inst.send_scpi_query(\":INST:CHAN?\")\n",
 "print(\"Selected channel is\" + resp)\n",
 "inst.send_scpi_cmd(':INIT:CONT OFF')\n",
 "# Get the status of contineous mode 1= ON, 0=OFF\n",
 "resp = inst.send_scpi_query(\":INIT:CONT?\")\n",
 "print(\"State of contineous mode is : \" + resp)\n",
 "inst.send_scpi_cmd(':TRIG:COUP ON')\n",
 "inst.send_scpi_cmd(':TRIG:SOUR:ENAB INT')\n",
 "inst.send_scpi_cmd(':TRIG:SEL INT')\n",
 "inst.send_scpi_cmd(':TRIG:STAT ON')"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "212b2e2e",
 "metadata": {},
 "outputs": [],
 "source": [
 "inst.send_scpi_cmd(':INST:CHAN 1')\n",
 "inst.send_scpi_cmd('*TRG')"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "685d4364",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 ""
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## CPU Trigger Test\n",
 "\n",
 "\n",
 "Test CPU Trigger to activate Channel operation.\n",
 "\n",
 "Test Setup:\n",
 "* One module of P948x\n",
 "* Scope connected to channel 1 of the module.\n",
 "\n",
 "This example creates 3 waves of different types, download the waves once for each DDR (depending on the number of channels in the device). Creates a task table. Download it for each channel and plays the task table according to a trigger send by the script. Verify on Scope connected to Channel 1 to see generated signal. Only selected channel will be triggered."
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib notebook\n",
 "import numpy as np\n",
 "import time\n",
 "import ipywidgets as widgets\n",
 "import matplotlib.pyplot as plt"
]
 },
 {
 "cell_type": "code",
 "execution_count": 2,
 "metadata": {},
 "outputs": [],
 "source": [
 "import os\n",
 "import gc\n",
 "import sys\n",
 "srcpath = os.path.realpath('SourceFiles')\n",
 "sys.path.append(srcpath)\n",
 "#from teproteus import TEProteusAdmin, TEProteusInst\n",
 "from tevisainst import TEVisaInst"
]
 },
 {
 "cell_type": "code",
 "execution_count": 3,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "connected to: Tabor Electronics,P9484M,000002210254,1.237.0 --slot#: 4, \n"
]
 }
],
 "source": [
 "# Connect to instrument\n",
 "\n",
 "# Please choose appropriate address:\n",
 "inst_addr = 'TCPIP::192.168.0.89::5025::SOCKET'\n",
 "\n",
 "inst = TEVisaInst(inst_addr)\n",
 "\n",
 "resp = inst.send_scpi_query(\"*IDN?\")\n",
 "print('connected to: ' + resp)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 4,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "0, no error\n"
]
 }
],
 "source": [
 "# Set the default paranoia level. \n",
 "# It controls the default behavior of: inst.send_scpi_cmd(scpi_str).\n",
 "# - paranoia-level = 0: send scpi_str as is.\n",
 "# - paranoia-level = 1: append '*OPC?' to scpi_str, and send it as query \n",
 "# - paranoia-level = 2: append ':SYST:ERR?' to scpi_str, send it as query, and print warnning in case of error.\n",
 "\n",
 "inst.default_paranoia_level = 2 # paranoia-level = 2 (good for debugging)\n",
 "\n",
 "# Reset the instrument\n",
 "inst.send_scpi_cmd('*CLS; *RST')\n",
 "resp = inst.send_scpi_query(\":SYST:ERR?\")\n",
 "print(resp)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 5,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "0, no error\n"
]
 }
],
 "source": [
 "# Set sampling clock rate\n",
 "inst.send_scpi_cmd(':FREQ:RAST 2.5e9')\n",
 "\n",
 "resp = inst.send_scpi_query(':SYST:ERR?')\n",
 "print(resp)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 6,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Model: P9484M \n",
 "Number of channels: 4\n",
 "Max segment number: 65536\n",
 "Available memory per DDR: 17,171,434,432 wave-bytes\n",
 "Max segment length: 8,585,717,216\n"
]
 }
],
 "source": [
 "# Get the model:\n",
 "model_name = inst.send_scpi_query('SYST:INF:MODel?')\n",
 "print('Model: {0} '.format(model_name))\n",
 "\n",
 "# Get number of channels\n",
 "resp = inst.send_scpi_query(\":INST:CHAN? MAX\")\n",
 "print(\"Number of channels: \" + resp)\n",
 "num_channels = int(resp)\n",
 "\n",
 "# Get model dependant parameters:\n",
 "\n",
 "if model_name.startswith('P948'):\n",
 " bpp = 2\n",
 " max_dac = 65535\n",
 " wpt_type = np.uint16\n",
 " channels_per_dac = 2\n",
 "elif model_name.startswith('P908'):\n",
 " bpp = 1\n",
 " max_dac = 255\n",
 " wpt_type = np.uint8\n",
 " channels_per_dac = 1\n",
 "else:\n",
 " bpp = 2\n",
 " max_dac = 65535\n",
 " wpt_type = np.uint16\n",
 " channels_per_dac = 2\n",
 " \n",
 "half_dac = max_dac / 2.0\n",
 "\n",
 "# Get the maximal number of segments\n",
 "resp = inst.send_scpi_query(\":TRACe:SELect:SEGMent? MAX\")\n",
 "print(\"Max segment number: \" + resp)\n",
 "max_seg_number = int(resp)\n",
 "\n",
 "# Get the available memory in bytes of wavform-data (per DDR):\n",
 "resp = inst.send_scpi_query(\":TRACe:FREE?\")\n",
 "arbmem_capacity = (int(resp) // 64) * 64\n",
 "print(\"Available memory per DDR: {0:,} wave-bytes\".format(arbmem_capacity))\n",
 "\n",
 "max_seglen = arbmem_capacity // bpp\n",
 "print ('Max segment length: {0:,}'.format(max_seglen))"
]
 },
 {
 "cell_type": "code",
 "execution_count": 7,
 "metadata": {},
 "outputs": [],
 "source": [
 "# Build 3 waveforms\n",
 "\n",
 "seglen = 4096\n",
 "cyclelen = seglen\n",
 "ncycles = seglen / cyclelen\n",
 "waves = [None for _ in range(3)]\n",
 "\n",
 "# sin wave:\n",
 "x = np.linspace(\n",
 " start=0, stop=2 * np.pi * ncycles, num=seglen, endpoint=False)\n",
 "y = (np.sin(x) + 1.0) * half_dac\n",
 "y = np.round(y)\n",
 "y = np.clip(y, 0, max_dac)\n",
 "waves[0] = y.astype(wpt_type)\n",
 "\n",
 "# triangle wave:\n",
 "#x = np.linspace(\n",
 " # start=0, stop=2 * np.pi * ncycles, num=seglen, endpoint=False)\n",
 "#y = np.sin(x)\n",
 "#y = np.arcsin(y)* 2 * half_dac / np.pi + half_dac\n",
 "#y = np.round(y)\n",
 "#y = np.clip(y, 0, max_dac)\n",
 "#waves[1] = y.astype(wpt_type)\n",
 "\n",
 "# square wave\n",
 "#x = np.linspace(start=0, stop=seglen, num=seglen, endpoint=False)\n",
 "#y = np.fmod(x, cyclelen)\n",
 "#y = (y <= cyclelen / 2) * max_dac\n",
 "#y = np.round(y)\n",
 "#y = np.clip(y, 0, max_dac)\n",
 "#waves[2] = y.astype(wpt_type)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 8,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Downloading segment 1 of channel 1\n",
 "1 1 4096 4096\n",
 "Downloading segment 1 of channel 3\n",
 "1 3 4096 4096\n",
 "0, no error\n"
]
 }
],
 "source": [
 "# download 3 waveforms to each DDR\n",
 "\n",
 "for ichan in range(num_channels):\n",
 " if ichan % channels_per_dac == 0:\n",
 " channb = ichan + 1\n",
 " # Select channel\n",
 " cmd = ':INST:CHAN {0}'.format(channb)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " for iseg in range(1):\n",
 " segnum = iseg + 1\n",
 " print('Downloading segment {0} of channel {1}'.format(segnum, channb))\n",
 " # Define segment\n",
 " cmd = ':TRAC:DEF {0}, {1}'.format(segnum, seglen)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " \n",
 " # Select the segment\n",
 " cmd = ':TRAC:SEL {0}'.format(segnum)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " print(segnum, channb, len(waves[0]), seglen)\n",
 " # Send the binary-data:\n",
 " inst.write_binary_data(':TRAC:DATA', waves[iseg])\n",
 " \n",
 "resp = inst.send_scpi_query(':SYST:ERR?')\n",
 "print(resp)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 9,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "0, no error\n"
]
 }
],
 "source": [
 "# Play the first segment in each channel\n",
 "\n",
 "for ichan in range(num_channels):\n",
 " channb = ichan + 1\n",
 " # Select channel\n",
 " cmd = ':INST:CHAN {0}'.format(channb)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " # Play the specified segment at the selected channel:\n",
 " cmd = ':SOUR:FUNC:MODE:SEGM {0}'.format(1)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " # Turn on the output of the selected channel:\n",
 " inst.send_scpi_cmd(':OUTP ON')\n",
 "\n",
 "resp = inst.send_scpi_query(':SYST:ERR?')\n",
 "print(resp)"
]
 },
 {
 "cell_type": "code",
 "execution_count": 10,
 "metadata": {},
 "outputs": [],
 "source": [
 "# Set the thrshhold level of the trigger\n",
 "inst.send_scpi_cmd(':TRIG:LEV 0.1')\n",
 " \n",
 "resp = inst.send_scpi_cmd(':INST:ACT {0}'.format(1))\n",
 "for ichan in range(num_channels):\n",
 " channb = ichan + 1\n",
 " # Select channel- Trigger source: EXT=TRG1 ,INT=CPU\n",
 " cmd = ':INST:CHAN {0}'.format(channb)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " inst.send_scpi_cmd('TRIG:SOUR:ENAB {}'.format('TRG1'))\n",
 " inst.send_scpi_cmd('TRIG:SEL {}'.format('TRG1'))\n",
 " inst.send_scpi_cmd('TRIG:STAT ON')"
]
 },
 {
 "cell_type": "code",
 "execution_count": 11,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "0, no error\n"
]
 }
],
 "source": [
 "# Define task-table of 3 tasks in each channel.\n",
 "# The first task shall wait for trigger1.\n",
 "# In order to \n",
 "\n",
 "tasklen = 3\n",
 "for ichan in range(num_channels):\n",
 " channb = ichan + 1\n",
 " # Select channel\n",
 " cmd = ':INST:CHAN {0}'.format(channb)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " \n",
 " # Compose the task-table rows:\n",
 " cmd = ':TASK:COMP:LENG {0}'.format(tasklen)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " for itask in range(tasklen):\n",
 " tasknb = itask + 1\n",
 " segnb = itask + 1\n",
 " nloops = 2 ** tasknb\n",
 "\n",
 " cmd = ':TASK:COMP:SEL {0}'.format(tasknb)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " inst.send_scpi_cmd(':TASK:COMP:TYPE SING')\n",
 "\n",
 " cmd = ':TASK:COMP:SEGM {0}'.format(segnb)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " cmd = ':TASK:COMP:LOOP {0}'.format(nloops)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " if 1 == tasknb:\n",
 " # Trigger source: EXT=TRG1 ,INT=CPU \n",
 " # in case of :TRIG:COUPLE ON need to put INT instead of CPU??\n",
 " cmd = ':TASK:COMP:ENAB TRG1'\n",
 " inst.send_scpi_cmd(cmd)\n",
 " else:\n",
 " cmd = ':TASK:COMP:ENAB NONE'\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " if tasklen == tasknb:\n",
 " cmd = ':TASK:COMP:NEXT1 1'\n",
 " inst.send_scpi_cmd(cmd)\n",
 " else:\n",
 " cmd = ':TASK:COMP:NEXT1 {0}'.format(tasknb + 1)\n",
 " inst.send_scpi_cmd(cmd)\n",
 "\n",
 " # Write the task-table\n",
 " inst.send_scpi_cmd(':TASK:COMP:WRIT')\n",
 "\n",
 " # Set Task-Mode\n",
 " inst.send_scpi_cmd(':FUNC:MODE TASK')\n",
 "\n",
 "if 0:\n",
 " # write the task table rows to the task-table of each channel\n",
 " for ichan in range(num_channels):\n",
 " channb = ichan + 1\n",
 " # Select channel\n",
 " cmd = ':INST:CHAN {0}'.format(channb)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " # Write the task-table\n",
 " inst.send_scpi_cmd(':TASK:COMP:WRIT')\n",
 "\n",
 " # Set Task-Mode\n",
 " inst.send_scpi_cmd(':FUNC:MODE TASK')\n",
 "\n",
 "resp = inst.send_scpi_query(':SYST:ERR?')\n",
 "print(resp)"
]
 },
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "## Send CPU Trigger - \n",
 "Verify on Scope connected to Channel 1 that signal is generated."
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "# :TRIG:COUPLE ON will require trigger from master, if single module in use and single channel, it should be off (default)\n",
 "# If more then 1 channel requires trigger, it should be ON and tasks trigger should be INT instead of CPU\n",
 "resp = inst.send_scpi_cmd(':TRIG:COUPLE ON')\n",
 "print(resp) "
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "#for trigger source INT send:\n",
 "inst.send_scpi_cmd(':INST:CHAN 1')\n",
 "#trigger command:\n",
 "inst.send_scpi_cmd('*TRG')"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": [
 "inst.close_instrument()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}

