

Proteus DUC
Primer

Rev. 1.0

Proteus_DUC_Primer Rev. 1.0

Confidential | 2

Warranty Statement
Products sold by Tabor Electronics Ltd. are warranted to be free from defects in workmanship or materials.
Tabor Electronics Ltd. will, at its option, either repair or replace any hardware products which prove to be
defective during the warranty period. You are a valued customer. Our mission is to make any necessary
repairs in a reliable and timely manner.

Duration of Warranty
The warranty period for this Tabor Electronics Ltd. hardware is one year, except software and firmware
products designed for use with Tabor Electronics Ltd. Hardware is warranted not to fail to execute its
programming instructions due to defect in materials or workmanship for a period of ninety (90) days from
the date of delivery to the initial end user.

Return of Product
Authorization is required from Tabor Electronics before you send us your product for service or
calibration. Call your nearest Tabor Electronics support facility. A list is located on the last page of this
manual. If you are unsure where to call, contact Tabor Electronics Ltd. Tel Hanan, Israel at 972-4-821-3393
or via fax at 972-4-821-3388. We can be reached at: support@tabor.co.il

Limitation of Warranty
Tabor Electronics Ltd. shall be released from all obligations under this warranty in the event repairs or
modifications are made by persons other than authorized Tabor Electronics service personnel or without
the written consent of Tabor Electronics.
Tabor Electronics Ltd. expressly disclaims any liability to its customers, dealers and representatives and to
users of its product, and to any other person or persons, for special or consequential damages of any kind
and from any cause whatsoever arising out of or in any way connected with the manufacture, sale,
handling, repair, maintenance, replacement or use of said products. Representations and warranties
made by any person including dealers and representatives of Tabor Electronics Ltd., which are inconsistent
or in conflict with the terms of this warranty (including but not limited to the limitations of the liability of
Tabor Electronics Ltd. as set forth above), shall not be binding upon Tabor Electronics Ltd. unless reduced
to writing and approved by an officer of Tabor Electronics Ltd. This document may contain flaws,
omissions, or typesetting errors. No warranty is granted nor liability assumed in relation thereto. The
information contained herein is periodically updated and changes will be incorporated into subsequent
editions. If you have encountered an error, please notify us at support@taborelec.com. All specifications
are subject to change without prior notice. Except as stated above, Tabor Electronics Ltd. makes no
warranty, express or implied (either in fact or by operation of law), statutory or otherwise; and except to
the extent stated above, Tabor Electronics Ltd. shall have no liability under any warranty, express or
implied (either in fact or by operation of law), statutory or otherwise.

Proprietary Notice
This document and the technical data herein disclosed, are proprietary to Tabor Electronics, and shall not,
without express written permission of Tabor Electronics, be used, in whole or in part to solicit quotations
from a competitive source or used for manufacture by anyone other than Tabor Electronics. The
information herein has been developed at private expense and may only be used for operation and
maintenance reference purposes or for purposes of engineering evaluation and incorporation into
technical specifications and other documents, which specify procurement of products from Tabor
Electronics.

Proteus_DUC_Primer Rev. 1.0

Confidential | 3

Document Revision History

Revision Date Description Author

1.0 28-Jun-2023 • Original version. Joan Mercade

Acronyms & Abbreviations

Acronym Description

µs or us Microseconds

ADC Analog to Digital Converter

AM Amplitude Modulation

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

AWG Arbitrary Waveform Generators

AWT Arbitrary Waveform Transceiver

BNC Bayonet Neill–Concelm (coax connector)

BW Bandwidth

CW Carrier Wave

DAC Digital to Analog Converter

dBc dB/carrier. The power ratio of a signal to a carrier signal, expressed in decibels

dBm Decibel-Milliwatts. E.g., 0 dBm equals 1.0 mW.

DDC Digital Down-Converter

DHCP Dynamic Host Configuration Protocol

DSO Digital Storage Oscilloscope

DUC Digital Up-Converter

ENoB Effective Number of Bits

ESD Electrostatic Discharge

EVM Error Vector Magnitude

FPGA Field-Programmable Gate Arrays

GHz Gigahertz

GPIB General Purpose Interface Bus

GS/s Giga Samples per Second

GUI Graphical User Interface

HP Horizontal Pitch (PXIe module horizontal width, 1 HP = 5.08mm)

Hz Hertz

IF Intermediate Frequency

I/O Input / Output

IP Internet Protocol

IQ In-phase Quadrature

IVI Interchangeable Virtual Instrument

JSON JavaScript Object Notation

kHz Kilohertz

LCD Liquid Crystal Display

LO Local Oscillator

Proteus_DUC_Primer Rev. 1.0

Confidential | 4

Acronym Description

MAC Media Access Control (address)

MDR Mini D Ribbon (connector)

MHz Megahertz

MIMO Multiple-Input Multiple-Output

ms Milliseconds

NCO Numerically Controlled Oscillator

ns Nanoseconds

PC Personal Computer

PCAP Projected Capacitive Touch Panel

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PRBS Pseudorandom Binary Sequence

PRI Pulse Repetition Interval

PXI PCI eXtension for Instrumentation

PXIe PCI Express eXtension for Instrumentation

QC Quantum Computing

Qubits Quantum bits

RADAR Radio Detection And Ranging

R&D Research & Development

RF Radio Frequency

RT-DSO Real-Time Digital Oscilloscope

s Seconds

SA Spectrum Analyzer

SCPI Standard Commands for Programmable Instruments

SFDR Spurious Free Dynamic Range

SFP Software Front Panel

SMA Subminiature version A connector

SMP Subminiature Push-on connector

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TFT Thin Film Transistor

T&M Test and Measurement

TPS Test Program Sets

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VCP Virtual COM Port

Vdc Volts, Direct Current

V p-p Volts, Peak-to-Peak

VSA Vector Signal Analyzer

VSG Vector Signal Generator

WDS Wave Design Studio

Proteus_DUC_Primer Rev. 1.0

Confidential | 5

Contents

Document Revision History ...3
Acronyms & Abbreviations ..3
Contents ...5
Figures ..6
Tables ...7
1 Introduction ..8

1.1 Frequently Asked Questions... 14
2 Programming the DUC in Proteus ... 15

2.1 Data Formatting and Downloading for the DUC .. 17
2.2 Baseband Waveform Calculation for the Proteus DUC .. 20

 Interpolation-related Clipping .. 25
2.3 IQ Waveforms Quantization ... 27
2.4 Resampling ... 30

3 Related Documentation ... 35
4 Appendix 1 – MATLAB Programming Example .. 36

Proteus_DUC_Primer Rev. 1.0

Confidential | 6

Figures

Figure 1.1 Proteus modules incorporate one or two two-channel DAC chips. Each chip is associated to a
Waveform Memory bank. In the DUC mode, each channel is associated to two independent DUCs (a).
Each DUC is an Numerical IQ modulator with its own Numerically Controlled Oscillator acting as the L.O.
for the modulator (b). The NCO is implemented as a DDS synthesizer where frequency and phase can be
controlled through two registers (c). In Proteus the DDS Frequency Control register is 48-bit wide so

frequency can be set with 30Hz resolution at maximum SRDAC (9 GS/s). ... 8
Figure 1.2 Real-Time interpolation is applied in Proteus to reduce the sampling rate of the baseband I/Q
waveforms while keeping the high SRDAC required to obtain a high enough Nyquist Frequency and
sufficient image separation. 2X, 4X, and 8X are the interpolation factors implemented in the Proteus
unit. In a), with SRDAC = 5GS/s, IF = 4X, MB = 1.125GHz, and FC = 1.8GHz results in images in the first NZ
and the second NZ separated by just 400MHz. In b), Increasing SRDAC to 9GS/s and setting the IF to 8X,
the separation between images is more than 4GHz... 10
Figure 1.3 Interpolation in real-time is carried out by applying xN zero padding process so the sampling
rate is multiplied by factor N. Then, a near-ideal low-pass filter is applied to remove all the unwanted
images so only the original first NZ signal (f < SRBB / 2) and the new image close to SRDAC are preserved.
 .. 11
Figure 1.4 In Proteus, The DUC can work in four modes. In the NCO Mode (a), there is no modulation,
and the NCOs can be used to generate carriers at any frequency. In the IQ Mode ONE (b), just one of the
DUCs is used and just one IQ waveform is read from the waveform memory. The IQ Mode TWO (c) uses
both DUCs to produce two independent modulated carriers. It requires two multiplexed IQ waveforms
sampled at the same SRBB. Finally, the HALF mode use the DUC infrastructure in two channels so SRBB
can be increased by a factor of two, at the expense of disabling half of the channels. 12
Figure 2.1 IQ waveform data must be properly multiplexed and formatted to be downloaded to the
waveform memory. The format of the data depends on the IQ Mode. For the ONE mode, the 16-bit I and
Q samples are just interleaved (a). In the TWO mode, there is multi-layer byte, I/Q, and IQ1/IQ2 pair
interleaving process (b). The HALF mode handles I and Q waveforms as non-interleaved, separate
waveforms as they go to different segments within the same memory bank (c). 18
Figure 2.2 Normalization of I and Q waveforms must be performed prior to quantization to make sure
the DUC will not clip. Just normalizing I and Q independently will not guarantee unclipped signals. For
the ONE and HALF mode, normalization is performed by making sure the module of the complex signal (I
+ jQ) is always lower than 1.0 (a). In the TWO mode, at any sample time, the IQ1 and IQ2 waveforms
combine depending on the instantaneous phase of the corresponding carriers. However, as NCOs run
independently, worst case scenario (when both phases are aligned) may happen at any moment so
normalization must make sure that the worst case combination of modules for IQ1 and IQ2 is lower than
1.0 (b). ... 24
Figure 2.3 Quantization must be performed by selecting the binary level closest to the sample. It is
important to map the -1.0/+1-0 range to the 1/2N-1 range in the DAC. If the 0/2N-1 range is used (a), a
small carrier leakage will show up (-78dBc in this example). Using the right DAC range (b), the residual
carrier disappears. .. 28
Figure 2.4 Traditional resampling algorithm are quite similar to interpolation when the input and ouput
sampling rates have a N/D fractional ratio. The main difference is the resampling filter (same for
upsampling and lower frequency cutoff for downsampling) and the addition of the decimation process.
Here, an example of N/D = 5/8 resampling is shown. The main problem with this methodology is that it
can result in huge intermediate waveforms and take a very long time to calculate. 31

Proteus_DUC_Primer Rev. 1.0

Confidential | 7

Figure 2.5 In this simulation, an 802.11ad signal calculated at the OFDM sampling rate (2640MS/s) is
resampled to be generated by Proteus at 9GS/s in the DUC mode, IQ Mode HALF, and 4X interpolation.
This results in a target SRBB of 2.25GS/s. once the resampling algorithm is applied, all the information of
the signal is preserved (almost 2GHz Bandwidth). The resulting SRBB is 2248.0972MS/s after correcting it
given the waveform length granularity that must be applied. ... 32
Figure 2.6 Resampling when the bandwidth of the input signal is close, equal, or higher than the final
SRBB will result in the linear distortion of the high frequency components and, eventually, in some image
interference. Here a multi-tone signal with BW close to the target SRBB / 2. In the left, the multi-tone
signal lies within the bandwidth of the interpolation filter with maximum flatness. In the right, although
all the carriers are preserved at an slightly lower final sampling rate, the highest frequency tones show
the effects of the resampling filter’s roll off. The roll off of the resampling filter can be controlled by the
number of taps so it can be more effective at the expense of calculation time. 34

Tables

Table 1.1 Maximum DAC Sampling Rate and Modulation Bandwidth vs. DUC Mode and Interpolation
Factor .. 9

Proteus_DUC_Primer Rev. 1.0

Confidential | 8

1 Introduction
The implementation of the DUC (Digital Up-Converter) in the Proteus family of products is depicted in the
figure 1.1 below.

Figure 1.1 Proteus modules incorporate one or two two-channel DAC chips. Each chip is associated to
a Waveform Memory bank. In the DUC mode, each channel is associated to two independent DUCs
(a). Each DUC is an Numerical IQ modulator with its own Numerically Controlled Oscillator acting as
the L.O. for the modulator (b). The NCO is implemented as a DDS synthesizer where frequency and

phase can be controlled through two registers (c). In Proteus the DDS Frequency Control register is 48-

bit wide so frequency can be set with 30Hz resolution at maximum SRDAC (9 GS/s).

Proteus_DUC_Primer Rev. 1.0

Confidential | 9

Two independent DUC blocks are associated to each AWG channel. The DUC functionality is standard in
the P948X family and optional in the P258X. The theory of the DUC and the advantages of using it for RF
signal generation can be read in the “Proteus Programming Manual”. Proteus can use one of the DUCs for
a given channel or both simultaneously. The trade-off is the maximum modulation bandwidth (using two
DUCs results in half of the available modulation BW). Additionally, an additional IQ modulation mode
combines the processing part of two channels to produce one single output, so just half of the processing
chain for one of the DUC in each channel is used. In this way, modulation bandwidth doubles compared
to using one full DUC for each channel.

Table 1.1 Maximum DAC Sampling Rate and Modulation Bandwidth vs. DUC Mode and Interpolation
Factor

DUC Mode Interpolation X2 Interpolation X4 Interpolation X8

IQ MODE HALF
(Half DUC/Channel)

Max SRDAC: 5GS/s
Mod. BW = 2.5GHz

Max SRDAC: 9GS/s
Mod. BW = 2.25GHz

Max SRDAC: 9GS/s
Mod. BW = 1.125GHz

IQ MODE ONE
(One DUC/Channel)

Max SRDAC: 2.25GS/s
Mod. BW = 1.25GHz

Max SRDAC: 5GS/s
Mod. BW = 1.25GHz

Max SRDAC: 9GS/s
Mod. BW = 1.125GHz

IQ MODE TWO
(Two DUCs/Channel)

Max SRDAC: 1.25GS/s
Mod. BW = 625MHz

Max SRDAC: 2.5GS/s
Mod. BW = 625MHz

Max SRDAC: 5GS/s
Mod. BW = 562.5MHz

It is important to understand how the baseband I/Q waveforms are transformed in a fully modulated RF
signals ready for digital-to-analog conversion. In this way, the right settings can be set in the generator
and the right parameters can be applied to the calculation of the baseband waveforms. I and Q waveforms
are stored in the waveform memory and supplied to the DUC processing chain at some integer fraction of
the final sampling rate. I and Q samples always use 16-bit samples and the overall transfer rate for each
channel cannot go beyond 5GBytes/s. As IQ modulation takes place at the final sampling rate, the
sampling rate of the incoming IQ data must be interpolated by 1X, 2X, 4X, or 8X interpolation factors. For
a given DAC sampling rate, only interpolation factors resulting in data transfer rate per channel equal or
lower than the maximum, are acceptable. The above table gives the maximum DAC sampling rate and
Modulation Bandwidth depending on the DUC mode and interpolation factor. Sampling rate for the
baseband signals (SRBB) can be calculated as a fraction of the DAC sampling rate (SRDAC) and the
interpolation factor (IF) using the following expression:

SRBB = SRDAC / IF (1)

The data throughput (DT), expressed in bits/s, from the waveform memory for a given IQ pair can be
calculated using the formula below:

DT = SRBB x 2 samples x 2 bytes = SRBB x 4 (2)

Let’s use an example for the generation of a 1GHz BW, modulated signal at 1.8GHz carrier frequency using
a P9484M in the IQ Mode ONE, so only one of the two DUCs is used, see figure 1.4b below.

Proteus_DUC_Primer Rev. 1.0

Confidential | 10

Figure 1.2 Real-Time interpolation is applied in Proteus to reduce the sampling rate of the baseband

I/Q waveforms while keeping the high SRDAC required to obtain a high enough Nyquist Frequency and
sufficient image separation. 2X, 4X, and 8X are the interpolation factors implemented in the Proteus

unit. In a), with SRDAC = 5GS/s, IF = 4X, MB = 1.125GHz, and FC = 1.8GHz results in images in the first NZ
and the second NZ separated by just 400MHz. In b), Increasing SRDAC to 9GS/s and setting the IF to 8X,

the separation between images is more than 4GHz.

If we take the DAC sampling rate to be 5GS/s and interpolation factor 2X, the baseband sampling rate will
be:

SRBB = 5GHz / 2 = 2.5GS/s

And the data throughput will be:

DT = 2.5GS/s x 4 Bytes / complex sample = 10GBps > 5GBps

This means that the 2X interpolation factor cannot be used in this case, if we do the same calculations
with the 4X interpolation factor, we obtain

SRBB = 5GHz / 4 = 1.25GS/s, DT = 1.25GS/s x 4 bytes / complex sample = 5GBps <= 5GBps

which is within the operational limits of Proteus. In this case, modulation BW will be close to 1.25GHz,
which is greater than the required 1GHz. The closest image at the output of the DAC will be located at
5GHz-1.8GHz = 3.2GHz, and the gap between the image in the first NZ and the image in the second NZ will
be just 400MHz as shown in the figure 1.2b.

Proteus_DUC_Primer Rev. 1.0

Confidential | 11

Figure 1.3 Interpolation in real-time is carried out by applying xN zero padding process so the

sampling rate is multiplied by factor N. Then, a near-ideal low-pass filter is applied to remove all the
unwanted images so only the original first NZ signal (f < SRBB / 2) and the new image close to SRDAC are

preserved.

Removing the unwanted image (the one in the second NZ in this case) would require a complex and
expensive band-pass filter. In order to avoid this issue, the DAC sampling rate could be increased to the
maximum for the P9484M, 9GS/s. In this case, using the 4x interpolator would result in an overall 9GBps
data throughput, beyond the operational limits of this unit, so the interpolation factor must be set to the
maximum 8x (as shown in fig. 1.3). This results in

SRBB = 9GHz / 8 = 1.125GS/s, DT = 1.125GS/s x 4 bytes / complex sample = 4.5GBps < 5GBps

In this case, modulation BW will be close to 1.125GHz, still larger than the required 1GHz. However, the
image in the second NZ will be located at 9GHz – 1.8GHz = 7.2GHz. The gap between the images in the
first and the second NZs will be 4.4GHz now, so filtering out the unwanted image will be much simpler.
Interpolators are implemented in the way shown in the figure 1.3.

Proteus_DUC_Primer Rev. 1.0

Confidential | 12

Figure 1.4 In Proteus, The DUC can work in four modes. In the NCO Mode (a), there is no modulation,
and the NCOs can be used to generate carriers at any frequency. In the IQ Mode ONE (b), just one of

the DUCs is used and just one IQ waveform is read from the waveform memory. The IQ Mode TWO (c)
uses both DUCs to produce two independent modulated carriers. It requires two multiplexed IQ
waveforms sampled at the same SRBB. Finally, the HALF mode use the DUC infrastructure in two

channels so SRBB can be increased by a factor of two, at the expense of disabling half of the channels.

Proteus_DUC_Primer Rev. 1.0

Confidential | 13

First, sampling rate is increased through a process called zero-padding. It adds N-1 zeros after each sample
for a xN interpolation factor. Then, a FIR interpolation digital filter is applied to remove the images of the
original non-interpolated waveform and leave just the ones corresponding to the new sampling
frequency. As real-world filters are not like the ideal brick-wall low-pass filter, the available modulation
BW is slightly lower than the sampling rate before interpolation. Typically, actual modulation BW will be
around 80 to 95% of the SRBB expressed in Hz.
The DUC is actually a numerical IQ modulator. As in any IQ modulator, two sinewaves with 90O phase
difference have to be supplied to the multipliers applied to the I and Q interpolated waveforms. In
Proteus, these sinewaves come from a single DDS (Direct Digital Synthesis) architecture NCO (Numerically
Controlled Oscillator) as shown in figure 1.1c. The same phase accumulator value is applied to two
different lookup tables where a Cos(x) and a -Sin(x) waveform are implemented. In this way, quadrature
balance and error, and carrier feedthrough are perfect as numerical process does not leave room to any
of these impairments. In Proteus, the NCO can be set to any frequency between DC and the current
sampling rate, so it covers the first two Nyquist Zones. This is important when the wanted image is in one
of the even-numbered Nyquist Zones as it allows for the correct generation of modulated signals without
inverting the spectrum of the incoming baseband signal (this can be accomplished by inverting one of the
components or by swapping the I and the Q components). Both operations would require updating the
waveforms in the memory when switching from an even to an odd numbered NZ). As in any DDS
synthesizer, the frequency is set by loading a control binary word in a frequency-control register. Phase
can also be controlled through a phase-control register. The size of the frequency-control register also
defines the frequency resolution of the DDS. In the Proteus DUC, the DDS in the NCO uses a 48-bit
frequency-control register. The output frequency of the DDS can be calculated through the following
expression:

FOUT = SRDAC * k / 2
N, k = 0…2N - 1 (3)

where N is the size of the frequency-control register expressed in bits. Frequency resolution will be

FRES = SRDAC / 2
N (4)

For the 48-bit frequency-control register in Proteus, FRES @ 9GS/s is 32Hz.
As mentioned earlier, Proteus incorporates two DUCs per channel. They can be used together in the IQ
mode TWO (Figure 1.4c). The way to calculate the baseband sampling rates remain the same. However,
as two IQ pair waveforms are fed into the same channel, expression (2) above has to be modified to the
following:

DT = SRBB x 2 IQ pair x 2 samples x 2 bytes = SRBB x 8 (5)

The above expression limits the usable modulation bandwidth for a given DAC sampling rate to half. For
5GS/s, the waveform data throughput will be:

SRBB = 5GHz / 8 = 625MS/s, DT = 625MS/s x 8 bytes / complex sample = 5GBps

So, 5GS/s is the maximum DAC sample rate that can be set when using the IQ Mode TWO. In the IQ mode
HALF (Figure 1.4d), two channels are used together. In the Proteus units, channels are grouped in pairs
sitting in the same DAC Chip. These two DACs can be grouped to act as a single channel. The I component
is fed into the odd numbered channel N, while the Q component is fed into the even numbered channel
N+1. The NCOs in each channel are synchronized so they work as a single quadrature NCO. Finally, the

Proteus_DUC_Primer Rev. 1.0

Confidential | 14

output of the even-numbered channel is disabled, and the numerical output of the Q multiplier is routed
internally to the adder in DUC #1 in the odd-numbered channel. This strategy results in the availability of
twice the data throughput than in IQ Mode ONE. This allows for the selection of a lower interpolation
factor. For the P9484M, at 9GS/s, the baseband sample rate using the 4X interpolation factor will be

SRBB = 9GHz / 4 = 2.25GS/s

While data throughput (per channel) will be

DT = SRBB x 1/2 IQ pair x 2 samples x 2 bytes = SRBB x 2 (6)

DT = 2.25GS/s x 1/2 IQ pair x 2 samples x 2 bytes = 4.5GBps < 5GBps

This results in a modulation BW larger than 2GHz at the expense of losing half of the channels.

1.1 Frequently Asked Questions

• SCLK limits depending on IF and DUC mode: Table 1.1 Maximum DAC Sampling Rate and

Modulation Bandwidth vs. DUC Mode and Interpolation Factor

• Command order for DUC programming: 2 Programming the DUC in Proteus

• IQ data formatting: 2.1 Data Formatting and Downloading for the DUC

Proteus_DUC_Primer Rev. 1.0

Confidential | 15

2 Programming the DUC in Proteus
The default state of the Proteus AWG (the one after starting it up or after resetting it with the *RST) is the
DIRECT conversion mode. In this mode, samples bypass the DUC block and are fed directly to the DAC.
The DUC mode can only be selected when the instrument is in the 16-bit mode. 16-bit mode is the default
mode when the DAC sampling rate is lower or equal than 2.5GS/s. This is always the case for the P258X
Proetus models, and this is the mode for the P948X after reset as the default sampling rate for all Proteus
models is 1GS/s. However, the P948x models transition to the 8-bit mode (where samples are made by 8-
bit integers) when sampling rate is set to be higher than 2.5GS/s and no interpolation is applied to the
incoming waveform from the memory. In practical terms, this means that sampling rate must be set to
the higher than 2.5GS/s state AFTER the DUC mode has been selected and the corresponding interpolation
factor is applied. The pseudo-code to set up the DUC mode in the IQ Mode ONE would be as follows:

:INSTrument:CHANnel 1 % Default is 1. Channel can be 1, 2, 3, or 4

% Download IQ1 interleaved waveform here

:FREQuency:RASTer 2.5E9 % Between 2.0E9 and 2.5E9. Not required after *RST

:INTerpolation X8 % X8 is the default, alternatively use X4, X2

:MODE DUC % Default mode is DIRect

:IQModulation ONE % ONE is default

:FREQuency:RASTer 9.0E9 % Any compatible DAC sampling rate can be set now

% IQ1 interleaved waveform can be downloaded here as well

:NCO:SIXDb1 ON % This will increase NCO amplitude by 6dB

:NCO:CFRequency1 1.8E9 % 1.8GHz. It can be set from 0.0 up to 9.0E9

:NCO:PHASe1 45.0 % 0.0 is the default. It can be any angle in degrees

:SOURce:VOLT 0.5 % Output amplitude in Volts

:FUNCtion:MODE:SEGMent 1 % Segment #1 is used for generation as an example

:OUTPut ON % Output for the selected channel is activated

The above sequence of commands would result in channel 1 generating an IQ modulated signal with
1.8GHz carrier frequency at 9GS/s sample rate for the DAC. Sampling frate for the baseband signals would
be 1.125GS/s so the available modulation bandwidth would be slightly larger than 1GHz. The command
sequence for the TWO mode would be as follows:

:INSTrument:CHANnel 1 % Default is 1. Channel can be 1, 2, 3, or 4

% Download IQ1/IQ2 double interleaved waveform here

:FREQuency:RASTer 2.5E9 % Between 2.0E9 and 2.5E9. Not required after *RST

:INTerpolation X8 % X8 is the default, alternatively use X4, X2

:MODE DUC % Default mode is DIRect

:IQModulation TWO % ONE is default

:FREQuency:RASTer 5.0E9 % Any compatible DAC sampling rate can be set now

% IQ1/IQ2 double interleaved waveform can be downloaded here as well

:NCO:SIXDb1 ON % This will increase NCO1 amplitude by 6dB

:NCO:CFRequency1 1.8E9 % NCO1 set to 1.8GHz. It can be set from 0.0 up to

% 5.0E9

:NCO:PHASe1 45.0 % NCO1 Phase. 0.0 default. It can be any angle

% in degrees

:NCO:SIXDb2 ON % This will increase NCO2 amplitude by 6dB

Proteus_DUC_Primer Rev. 1.0

Confidential | 16

:NCO:CFRequency2 500E6 % NCO2 set to 500MHz. It can be set from 0.0 up to

% 5.0E9

:NCO:PHASe2 90.0 % NCO2 Phase. 0.0 default. It can be any angle in

% degrees

:SOURce:VOLT 0.5 % Output amplitude in Volts

:FUNCtion:MODE:SEGMent 1 % Segment #1 is used for generation as an example

:OUTPut ON % Output for the selected channel is activated

The TWO mode limits the maximum sampling rate for the X8 interpolation factor to 5GS/s as waveform
transfers are now made of 4-tuples of samples (I1/Q1/I2/Q2) doubling the data throughput from the
waveform memory. Relative amplitude for the 500MHz and 1.8GHz modulated signals is controlled
through the IQ values for each pair. The above sequence of commands would result in channel 1
generating one IQ modulated signal with 1.8GHz carrier frequency and another at 500MHz carrier
frequency at 5GS/s sample rate for the DAC. Sampling frate for the baseband signals would be 562.5MS/s
so the available modulation bandwidth would be around 500MHz.
The HALF mode handles the I and Q waveforms as independent entities. I and Q components are then
downloaded independently to each participating channel in the pair. This is the pseudo-code for this
mode:

:INSTrument:CHANnel 1 % Channel 1 will be used for I

% Download I waveform here to some segment, i.e. segment #1

:FREQuency:RASTer 2.5E9 % Between 2.0E9 and 2.5E9. Not required after *RST

:INTerpolation X4 % X8 is the default, alternatively use X4, X2

:MODE DUC % Default mode is DIRect

:IQModulation HALF % ONE is default

:FREQuency:RASTer 9.0E9 % Any compatible DAC sampling rate can be set now

:NCO:SIXDb1 ON % This will increase NCO1 amplitude by 6dB

:NCO:CFRequency1 1.8E9 % NCO1 set to 1.8GHz. It can be set from 0.0 up to

% 5.0E9

:NCO:PHASe1 45.0 % NCO1 Phase. 0.0 default. It can be any angle in

% degrees

:FUNCtion:MODE:SEGMent 1 % Segment #1 is used for I generation as an example

:INSTrument:CHANnel 2 % Channel 2 will be used for Q

% Download Q waveform here to a different segment, i.e. segment #2

:NCO:SIXDb1 ON % This will increase NCO1 for Q amplitude by 6dB

:NCO:CFRequency1 1.8E9 % NCO1 for Q must be set to the same I frequency

:NCO:PHASe1 45.0 % NCO1 Phase for Q must be set to the same I phase

:FUNCtion:MODE:SEGMent 2 % Segment #2 is used for Q generation as an example

:INSTrument:CHANnel 1 % Select Channel 1 as it will be the active output

:SOURce:VOLT 0.5 % Output amplitude in Volts

:OUTPut ON % Output for the selected channel is activated

The above sequence of commands would result in channel 1 generating one IQ modulated signal with
1.8GHz carrier frequency 9GS/s sample rate for the DAC. Sampling frate for the baseband signals would
be 2.25GS/s so the available modulation bandwidth would be larger than 2.1GHz. Segments for I and Q
must be different as the same waveform memory bank is shared between any pair of channels in the same
DAC chip (channels numbered 2N -1 and 2N, N = 1, 2).

Proteus_DUC_Primer Rev. 1.0

Confidential | 17

2.1 Data Formatting and Downloading for the DUC

Complex waveform data must be properly formatted before downloading it. The best way to think about
waveform data for Proteus is as a vector of unsigned 16-bit integers. For direct generation (where just a
real waveform is involved), just downloading this vector to the target segment in the waveform memory
will be sufficient. For the DUC mode, a complex IQ waveform is involved. In the IQ mode ONE there is a
single IQ pair, see figure 2.1a below.

Proteus_DUC_Primer Rev. 1.0

Confidential | 18

Figure 2.1 IQ waveform data must be properly multiplexed and formatted to be downloaded to the
waveform memory. The format of the data depends on the IQ Mode. For the ONE mode, the 16-bit I
and Q samples are just interleaved (a). In the TWO mode, there is multi-layer byte, I/Q, and IQ1/IQ2

pair interleaving process (b). The HALF mode handles I and Q waveforms as non-interleaved, separate
waveforms as they go to different segments within the same memory bank (c).

Proteus_DUC_Primer Rev. 1.0

Confidential | 19

The IQ pair values may be originally stored as two vectors with the same length, one for the I component,
and another one for the Q component. However, for the ONE mode, a single vector (IQ) made by the
interleaved elements of the I and Q vectors must be created for download using the following interleaving
scheme:

IQ(2n - 1) = I(n); n = 1….Size(I) = Size(Q) (7)

IQ(2n) = Q(n); n = 1….Size(I) = Size(Q) (8)

Segments in Proteus are always defined through the number of samples. This means that for the ONE IQ
Mode, segments will have twice the length of any of the components. It is also important to notice that
the granularity for the complex waveforms (or any of its components) will become half that of the Proteus
waveform granularity. If regular granularity is 32, it will become 16 for the complex waveforms as each
complex sample fills two real sample memory positions.
The TWO IQ Mode requires a more complex data interleaving as two IQ pairs must be stored in a given
segment of the waveform memory, Figure 2.1b. Given the way the data is processed internally in the
Proteus unit, if we take I1, Q1, I2, and Q2 as the four vectors containing the two IQ pairs, formatting the
data in a single vector IQ for download requires the following steps, as shown in figure 2.1b:

• Arrange the 16-bit samples in the I1, Q1, Q2, I2 sequence

• Split all the 16-bit samples in two bytes

• For each group of four samples, take the MSB bytes following the interleaving sequence shown

above resulting in the IQMSB vector

• The same operation must be performed for the LSB bytes resulting in the IQLSB vector

• The final waveform data is obtained by interleaving the IQMSB and IQLSB vectors built in the

previous steps

Notice that the final vector will be made of 8-bit unsigned integers, so its size will be 8 times the number
of complex samples for each IQ pair. The resulting vector will be composed by 4 times the number of
complex samples in a single IQ pair, and this will be the segment length. Again, the granularity value that
must be applied to the waveform length calculations must be the regular one divided by four. This results
in an actual granularity of 32/4 = 8 samples for the standard Proteus.
In the HALF IQ Mode, I and Q waveforms are handled as independent waveforms, so they do not need
special formatting procedure, and must be downloaded to segments with different number as the two
channels involved in the generation of the signal share the same waveform memory bank.
Downloading binary data to Proteus must be done according to the IEEE-488.2 binary block transfers
standard. This model is based in transfers of 8-bit bytes. The ONE and TWO IQ Modes formatting
procedures described above result in a vector made of 16-bit unsigned integers. For those modes,
depending on the programming language and the communication API used, it is possible to split the 16-
bit integers in two 8-bit integers before downloading or just use a binary transfer function in the library
capable of doing the same internally, so a 16-bit integer vector is supplied as an input parameter. The
binary block format defined by the IEEE-488.2 standard (and incorporated to the SCPI standard) defines a
header for the binary block with the #nmm..m ASCII characters before the actual binary data. The n is a
single digit (`0’,’1’,..’9’ in ASCII) expressing the number of ASCII digits (the m in the header) expressing the
number of bytes in the current transfer. As an example, the header #41024 would indicate that the
transfer is composed by 1024 bytes that should follow immediately. Therefore, a single binary transfer

Proteus_DUC_Primer Rev. 1.0

Confidential | 20

can consist in a maximum of 999,999,999 bytes (as the n is always a single digit so mm..m can be made of
up to 9 digits). Proteus supports even longer segments so waveform downloads must be split between
multiple transfers by using the offset mechanism supported by the Proteus platform. Even when the offset
mechanism for waveform download is used, binary transfers can be segmented by calling the same
function to transfer chunks of equal or different length. Using this strategy allows to keep smaller arrays
in the computer memory (so much slower virtual memory usage can be limited or avoided) and also limits
the time the control SW is waiting for the transfer to finish and allows for setting a lower time-out value
to detect when communication stalls for some unexpected reason. Given the overhead for each transfer
function call, chunks must be long enough, so overhead is not significative, but not too long, so array size
and transfer time for each chunk stays reasonable.
Proteus can be accessed through any VISA compatible API or using the DLL supplied with the instrument
FW. The VISA library is very well known and it is independent of the OS, communication interface, and
instrument, so it is largely used in T&M control SW. However, this level of compatibility pays some price
in terms of transfer speed. The alternative Tabor-supplied DLL supports direct access to the PCIe bus
within the PXIe bus and provides a much higher transfer speed for large binary blocks, with a much lower
overhead. This DLL works under Windows 10/11 in embedded PXI computers (i.e. the embedded
computers in the Benchtop and Desktop Proteus units) or with external computers using a PCIe/PXIe bus
extender implemented using MXI or Thunderbolt-based bridges.

2.2 Baseband Waveform Calculation for the Proteus DUC

Waveforms must be properly calculated in order to produce good-quality signals. These are the steps to
calculate properly complex (IQ) waveforms to be used with the Proteus DUC:

1. Waveform parameter calculation so the right sample rate for the DAC and interpolation factor
are selected according to the expected carrier frequency and modulation bandwidth required by
the application.

2. Waveform calculation including waveform length selection, pulsed or continuous RF generation,
single or multiple modulated waveforms, etc.

3. Waveform normalization to maximize SNR and signal power depending on the IQ Mode.
4. Waveform Quantization.

In order to simplify the understanding of the concepts involved, an example will be used. This example
consists in the generation of a multi-tone signal with arbitrary frequency and amplitude settings within a
1000MHz band around 3GHz, and a 1GHz minimum distance to the image in the second Nyquist Zone. A
MATLAB script will be used to better define all the procedures (Appendix 1).

Waveform Parameter Calculation
This step will result in the selection of the DAC sampling rate, the IQ mode and the interpolation factor to
be applied in the DDC, and the settings for the NCO. The Maximum Frequency (MF) component to be
generated in this example will be determined by the Carrier Frequency (CF) and the worst-case
Modulation Bandwidth (MB), and the minimum distance to the unwanted images (MDI):

MF = CF + MB / 2 + MDI / 2 (9)

Using the parameters for the example

MF = 3GHz + 1GHz/2 + 1GHz/2 = 4.5GHz

Proteus_DUC_Primer Rev. 1.0

Confidential | 21

The above Maximum Frequency can be implemented within the first Nyquist Zone for DAC sampling rates
(SR) equal or larger to 9GS/s. Selecting 9GS/s will result in a better-quality signal with enough distance to
the image in the second Nyquist Zone (1GHz) to allow for the use of a simple, inexpensive Low-Pass filter
to remove it, if necessary. The second step is selecting the interpolation factor. At 9GS/s and IQ Mode
ONE, the only available interpolation factor (IF) for the Proteus P948X series is 8X. Modulation Bandwidth
(MB), which is equal to the Baseband Sample Rate (BBSR), for the above settings will be

MB = SRBB = SRDAC / IF (10)

Again, using the values defined for the example

MB = 9GHz / 8 = 1.125GHz

In fact, the actual Modulation Bandwidth is slightly lower because the roll-off of the interpolation filter.
Interpolation filters for Proteus have a 0.01dB flatness for 80% of the Nyquist frequency of the input
waveform (before interpolation) and usable bandwidth (-3dB) is close to 90% so the desired 1GHz
modulation bandwidth is feasible with this interpolation factor. In this example, two tones must be
generated with a 500MHz maximum distance to the carrier frequency. If a larger than 1GHz distance
between tones must be implemented, there are two ways of doing it using the DUC block:

1. Use of the HALF IQ Mode: In this mode, modulation bandwidth around the central frequency
when the DAC sampling rate is 9GS/s will be 2.25GHz when setting the interpolation factor to
4X. In this case, just half of the output channels will be available.

2. Use of the TWO IQ Mode: In this mode, two DUCs are used for the same channel. To generate
two tones, it is not even necessary to apply any complex rotation to shift the position of the
tone respect to the carrier frequency. Instead, just setting each NCO to the final frequency and
apply an “all 1s” to one of the Components will result in two tones at any frequency between DC
and SR/2.

The first step is selecting the waveform length so the intended multi-tone signal can be implemented. One
way to start defining the required waveform length is by defining a “frequency resolution” parameter
(FR). To be always able to synthesize any tone defined with the specified frequency resolution while
keeping phase continuity, a time window (TW) equal to the inverse of this FR parameter must be
implemented (or any integer multiple of it):

TW = K / FR, K = 1, 2,…N (11)

Waveform Length (WL) can be calculated now:

WL = TW x SRBB (12)

If 1MHz is selected as the FR parameter

TW = K / 1MHz = K s

If SR is 9GS/s, and IF is 8X

SRBB = 9GS/s / 8 = 1.125GS/s
WL = K x 1E-6 x 1.125E9 = K x 1125 samples

Proteus_DUC_Primer Rev. 1.0

Confidential | 22

This is the raw waveform length. However, depending on the frequency of the tones, WL can be further
reduced. Depending on the number of cycles, the same exact sequence of samples may be exactly
repeated several times for each tone. If a common repetition period is found, the waveform length can
be reduced to this period. The way to calculate this is by finding the greatest common divider (GCD)
between the WL, and the number of cycles (NC) for all the tones (always an integer number when tone
frequencies, TFR, are rounded to the nearest multiple of FR):

NC(i) = abs((TFR(i) – FC) * TW) (13)

GCD = gcd(WL, NC(1),…(NC(N)) (14)

WL’ = WL / GCD (15)

As an example, if CF = 3GHz, TFR(1) = 2.9GHz, and TFR(2) = 3.3GHz, and K = 1

NC(1) = 100, NC(2) = 300
GCD = gcd(1125, 100, 300) = 25
WL’ = 1125 / 25 = 45 samples

The above WL’ is not the final one as this number does not meet the requirements for a waveform to be
generated by the Proteus AWG. Proteus require the waveform length of waveforms stored in the
waveform memory to be a multiple of 32, its basic granularity (BG). As each complex waveforms are made
of two real samples (I and Q), in the IQ mode ONE complex waveform must have an actual granularity
(AG) of 32/2 = 16 samples. The easiest way to meet this condition is by storing multiple repetitions of the
basic waveform until the overall number of samples is a multiple of the AG parameter. The waveform
length can be expressed as the Least Common Multiple (LCM) of the waveform length (WL’) and the actual
granularity (AG)

WL’’ = lcm(WL’, AG) (16)

For the example being calculated

WL’’ = lcm(45, 16) = 720 samples

The same basic waveform will be repeated 16 times, in this case. This is not the only way to adjust the
modulating signal to the waveform memory. An interesting alternative is using the closest lower multiple
of the actual granularity to the basic waveform length. Following the same example

SRBB = 9GS/s / 8 = 1.125GS/s

WL = K x 1E-6 x 1.125E9 = K x 1125 samples, K = 1 -> WL = 1125 samples

As 1125 is not a multiple of the Actual Granularity (AG) parameter, 16 in this case, waveform length must
be adjusted

WL’ = floor (WL / AG) x AG (17)

For this example, it will result in

Proteus_DUC_Primer Rev. 1.0

Confidential | 23

WL’ = floor(1125 / 16) x 16 = 70 x 16 = 1120 samples

Unless WL’ / AG is divisible by AG again, there is no way to apply the previously shown waveform length
optimization procedure. Often, this method results in lower waveform lengths, but not in this case. There
is an important issue, though. In order to keep the right timing and frequencies for the output waveform,
the final baseband (and DAC) sampling rate must be changed so the same time window is preserved. In
this case

WL/(SRDAC/IF) = WL’/(SRDAC’/IF) = TW, SRDAC’ = SRDAC x WL’/ WL (18)

In this case,

SRDAC’ = 9GS/s x 1120 / 1125 = 8.96GS/s

Some applications may require multiple segments with different requirements. Using the late
methodology may result in different effective sample rates (SR’) what may not be possible to apply
because they must be generated by different channels in the same module or in the same sequence in
one or more channels. Using the same sample rate for different channels or segments when it should be
different will result in timing and frequency errors that not all the applications can withstand.

IQ Waveforms Normalization
Waveforms to be used for direct generation (no DUC involved) are quite straightforward to normalize.
Using as much of the available DAC range as possible will result in the highest amplitude and the best
SFDR signal. Waveform calculations may result in any numeric range and most times they consist in a
vector of floating-point numbers. It may be useful to normalize to map the range of the vector to some
more convenient range. A very popular range for normalization is -1.0/+1.0 where -1.0 is aligned with the
lowest DAC output level while the +1.0 is aligned with the highest DAC output level. There are two
canonical ways to map the input range for the calculated waveform to the -1.0/+1.0 range:

1. Mapping the highest value in the incoming waveform vector to the +1.0 value and the lowest
value to the -1.0 value. In this way, the full range of the DAC will be used. However, the relative
DC level of the signal may be not preserved.

2. Mapping the highest absolute amplitude value to +1.0 and the 0 level to 0.0. Using this mapping
the maximum DAC range preserving the relative DC level will be used. In this case, unless the
input waveform is symmetrical around the 0.0 level, not all the DAC range will be used.

Method 1 does not preserve the DC level of the incoming vector. However, AWGs in direct conversion (no
DUC) can compensate for this using the DC Offset control. Anyway, this method cannot be used to
normalize complex IQ waveforms as each one of the components must preserve the right DC level
(typically 0) to avoid carrier leakage.
Another constraint is related with the quadrature modulator functionality. The NCO numerical IQ output
and the associated multipliers are designed in such a way that if just one of the components is being
applied to the modulator and it is using the full integer range at the input (16-bit for Proteus), the
numerical output of the IQ modulator will use the full DAC range without suffering any clipping effect.
When both components, I and Q, are being fed to the IQ modulator, there is a chance that the output of
the adder after the multipliers go beyond the lower and upper limits of the DAC, resulting in an extremely
non-linear clipped signal. The best way to avoid this effect is by normalizing both components so the
maximum module of the I/Q pair in the complex waveform is mapped to +1.0 normalized level and the 0
level is mapped to the 0.0 level, see figure 2.2a below.

Proteus_DUC_Primer Rev. 1.0

Confidential | 24

Figure 2.2 Normalization of I and Q waveforms must be performed prior to quantization to make sure
the DUC will not clip. Just normalizing I and Q independently will not guarantee unclipped signals. For

the ONE and HALF mode, normalization is performed by making sure the module of the complex
signal (I + jQ) is always lower than 1.0 (a). In the TWO mode, at any sample time, the IQ1 and IQ2

waveforms combine depending on the instantaneous phase of the corresponding carriers. However,
as NCOs run independently, worst case scenario (when both phases are aligned) may happen at any
moment so normalization must make sure that the worst case combination of modules for IQ1 and

IQ2 is lower than 1.0 (b).

Proteus_DUC_Primer Rev. 1.0

Confidential | 25

In this way, DC levels I and Q relative levels will be preserved, while clipping will be avoided. So, if IWFM
and QWFM are the non-normalized waveforms, the Normalization Factor (NF) must be calculated, and
the normalized ones will be expressed by

NF = max((IWFM2 + QWFM2)1/2) (19)

IWFM’ = IWFM / NF, QWFM’ = QWFM / NF (20)

The above expression can be used to normalize IQ waveforms when Proteus uses the IQ ONE or HALF
modes. For the TWO mode, things are more complex as two different IQ pairs must be generated. The
only way to avoid any problem is looking for the worst-case module of the combined waveform, see Figure
2.2. The worst-case scenario can be found by thinking that NCOs work coherently at the same frequency.
Expression (16) above can be modified accordingly

NF = max((IWFM12 + QWFM12)1/2+(IWFM22 + QWFM22)1/2) (21)

IWFM1’ = IWFM1 / NF, QWFM1’ = QWFM1 / NF

IWFM2’ = IWFM2 / NF, QWFM2’ = QWFM2 / NF (22)

 Interpolation-related Clipping

Even when applying proper normalization, clipping may happen as the interpolation process can reach
even more extreme values, especially for narrow peaks, quite typical in multi-tone and OFDM signals with
high bandwidths relative to SRBB. In this case, interpolated samples my go out of the DAC range (top and
bottom) and generate clipping resulting in lower-than-expected PAPR, spectral growth, and reduced EVM
performance. Although, interpolated waveforms could be simulated so the absolute peak values could be
found and the normalization factor corrected, this is a calculation intensive procedure that could be
avoided by forcing the final normalization factor to a higher value than the one calculated with the
methodology described previously. Ideally, correcting the normalization factor without calculating the full
interpolated waveform should be done through the analysis of the worst-case scenario. Worst-case
scenario can be easily calculated if the interpolation filter in known. It requires a specific sequence of input
samples that when convolved to the filter results in the highest possible positive or negative peaks. For a
general input sample sequence (bound to the -1.0/+1.0 range) and a symmetrical filter (interpolation
filters are always symmetrical to obtain linear phase response), it is quite easy to find out that this
sequence of samples is:

X(n) = sign(H(n)) (23)

NF = sum(abs(H(n))) (24)

However, for interpolators, the sequence of input samples consists in the input samples every IF samples
and IF-1 zeros in the middle. This is equivalent to using IF filters in parallel where the input samples are
applied at the original sample rate, so the interpolated waveform is obtained by multiplexing the output
of all the filters. Each one of the sub-filters consists in taking one of every IF samples from the overall
interpolation filters by shifting the initial sample by one for each filter. The problem now is finding which
one of the sub-filters results in the highest peak:

Proteus_DUC_Primer Rev. 1.0

Confidential | 26

HK(n) = H(IF * n + k), k = 0,..,IF-1 (25)

NFK = sum(abs(HK(n))) (26)

NF = max(NF1,…, NFIF-1) (27)

If we apply the above expressions to the actual interpolation filter used for 8x interpolation in the Proteus
family of products, NF is 2.3157 for a normalized waveform in the -1.0/+1.0 range. In other words, in order
to be absolutely free of interpolation-related clipping, no matter the input samples, the normalized
waveform must be attenuated by 7.3dB. This normalization factor correction may be unacceptable as the
peak power and SNR will be reduced by the same factor.
A less conservative approach may be taking the peak reached in the worst-case transition (-1.0 to 1.0) in
one sample time as the reference. When this transition is applied to the Proteus 8x interpolation filter,
the interpolated signals shown is obtained, see the figure below. NF is now 1.27483, or 2.1dB. This will
result in a better than 5dB improvement respect the worst-case scenario, but it does not guarantee a
clipping-free interpolation.

Figure 2.3 Original (red dots) and 8x interpolated (blue dots) maximum amplitude instantaneous

transient using the Proteus interpolator. In this case, the absolute value of the maximum and
minimum peaks is 1.27483. If interpolation related clipping must be avoided, the input normalized

waveform should be divided by the same number so the absolute value of the maximum and
minimum peaks are +1.0 and -1.0 again.

In order to analyze how well the above methodologies can be applied to calculating a generic
normalization factor, a statistical analysis may be required. First, multiple normalized multi-tone signal
with random phases will be used to analyze the normalization factors in a statistical way. The combination
of the number of tones and tone-spacing are selected in such a way the full modulation BW (SRBB) is used
(kind of worse-case scenario). For a test with 10,000 different multi-tone signals with different random
phase distributions, the maximum normalization factor obtained is 1.51 and the histogram for the
distribution of values can be seen in the figure below. Selecting 1.5 (or 3.52dB) as the additional correction
factor should result in no clipping for a vast majority of input waveforms.

Proteus_DUC_Primer Rev. 1.0

Confidential | 27

Selecting the right interpolation-related normalization factor depends on the test situation. Typically,
when the input waveform bandwidth is much lower than the modulation BW for the selected SRDAC and
IF, the additional NF can be very close to 1.0 (1.1 to 1.3). For wideband signals with random-like frequency-
domain contents (multi-tone with random phases, OFDM baseband signals), selecting a 1.4-1.5 additional
NF should result in clipping free signals at the output of the interpolator in about 99.9% of cases, and if
clipping happens, the impact of it (EVM degradation, spectral growth) should be quite limited. For any
situation where the best SNR and no clipping at all must be accomplished, the best solution is running a
simulation of the interpolation process so the actual absolute maximum for the interpolated waveform is
found, and the corresponding NF is applied.

Figure 2.4 Statistical analysis of the maximum peak for a multi-tone signal with a random phase and

using the full modulation BW of the DUC. After generating 10,000 different waveforms and simulating
the effects of the Proteus’ 8x interpolator, histogram in a) has been obtained. The maximum peak is
1.51 so selecting this additional normalization factor would result in 99.99% of waveforms without

showing any interpolation-related clipping effect. In b) a detail of one of the maximum peaks in one of
the acquisitions is shown. While the maximum value in the original waveform (red dots) is +1.0, the

maximum in the interpolated waveform is +1.26. Less than 5% of the 10,000 waveforms in the
statistical analysis go beyond 1.26 maximum peak.

2.3 IQ Waveforms Quantization

Once waveforms have been normalized, samples must be quantized to the integer size of the waveform
memory. For Proteus, I/Q samples are stored as 16-bit unsigned integers. The 0.0 DC level corresponds to
the 216 / 2 = 32768 level. The distance between the DAC 0 level and the 0.0 DC level will be 32768, while
the distance between the DAC maximum level and the 0.0 DC level will be 32767. This small asymmetry
means that mapping the -1.0 to the minimum DAC level and the +1.0 to the maximum DAC level (65535)
will cause a tiny DC level that will generate an small but detectable carrier leakage at the output of the IQ
modulator. This can be solved by mapping the -1.0 level to the DAC level 1. In this way, symmetry is perfect
and there will not be any carrier leakage at the output, see below figure.

Proteus_DUC_Primer Rev. 1.0

Confidential | 28

Figure 2.3 Quantization must be performed by selecting the binary level closest to the sample. It is

important to map the -1.0/+1-0 range to the 1/2N-1 range in the DAC. If the 0/2N-1 range is used (a), a
small carrier leakage will show up (-78dBc in this example). Using the right DAC range (b), the residual

carrier disappears.

As an additional improvement, sample values should be rounded to the nearest quantization level after
mapping the -1.0 level in the normalized waveform to the 0.5 level (so 1 – ½ LSB) and the +1.0 level to the
65535.5 (216 -1 + ½ LSB). This will be equivalent to “stretch” the signal by one additional quantization level
without causing any clipping.
DUCs are not forgiving when overdriving the IQ modulator as it results in hard clipping. In traditional
analog IQ modulators, some overdriving may be acceptable as non-linear distortion will show up
progressively. In some cases, it is possible to improve output power and SNR at the expense of some
spectral growth. As DUC results in hard clipping, overdriving IQ modulator will quickly reduce signal

Proteus_DUC_Primer Rev. 1.0

Confidential | 29

quality, so typically, clipping should be always avoided. This means that the maximum power of the output
signal depends on the DAC voltage range and the PAPR (Peak-to-Average Power Ratio) or Crest Factor of
the signal being generated. This is especially critical when multiple carriers are being generated
simultaneously. Multi-tone and OFDM signal generation are good examples of signals with potentially
high PAPR resulting in lower power signals. It is important to optimize (reduce) PAPR as much as possible,
so SNR and output power is maximized.

Generating Baseband Signals in the DUC Mode
Some applications may require RF and baseband (non-modulated) signals simultaneously. Envelope
tracking is a good example. In envelope tracking amplifiers, power efficiency and working temperature
are optimized controlling the power supply voltage to the amplifier so it “tracks” the envelope
(instantaneous RF amplitude) of the RF signal being amplified. If just a Proteus module is available, and
the DUC mode is chosen for high quality generation of the RF signal, all the channels in that module will
work in the DUC mode. Fortunately, the DUC block is flexible enough to also generate a baseband signal.
Any channel not being involved in the generation of a modulated or unmodulated RF signal can be used
to generate a synchronous (or not) baseband signal if the following methodology is used:

• The baseband signal must be sampled at the same speed than the IQ waveforms being used for

modulation in the DUC of the channels generating RF signals.

• The DUC always requires an IQ waveform so the baseband waveform must be handled as the I

component and associated to an “all zeros” Q waveform. Anyway, the Q waveform will not

influence the output waveform at all in this scheme.

• Once downloaded after interleaving of the IQ samples, the NCO in the DUC for the baseband

channel must be set to 0.0 Hz and its phase to 0 degrees. As the I output of the NCO will be just

cos(0) = 1.0 (a continuous DC level), the I signal will be interpolated and it will go through the IQ

modulator unaltered. Any Q component will be multiplied by -sin(0) = 0 so it will not contribute to

the output.

In 4 Appendix 1 – MATLAB Programming Example, an example “envelope tracking” script is shown. In the
TWO mode, one of the DUCs can be used to generate the RF signal while the other can add a variable DC
offset to the output by using it in the way described in this section. The pseudocode showing the sequence
of SCPI commands follows here:

:INSTrument:CHANnel 1 % Default is 1. Channel can be 1, 2, 3, or 4

:FREQuency:RASTer 2.5E9 % Between 2.0E9 and 2.5E9. Not required after *RST

INTerpolation X8 % X8 is the default, alternatively use X4, X2

:MODE DUC % Default mode is DIRect

:IQModulation ONE % ONE is default

% IQ1 interleaved waveform can be downloaded here to segment #1

:NCO:SIXDb1 ON % This will increase NCO1 amplitude by 6dB

:NCO:CFRequency1 1.8E9 % NCO1 set to 1.8GHz. It can be set from 0.0 up to

5.0E9

NCO:PHASe1 45.0 % NCO1 Phase. 0.0 default. It can be any angle in

degrees

:SOURce:VOLT 0.5 % Output amplitude in Volts

:FUNCtion:MODE:SEGMent 1 % Segment #1 is used for generation as an example

:OUTPut ON % Output for the selected channel is activated

:INSTrument:CHANnel 2 % Default is 1. Channel can be 1, 2, 3, or 4

% Baseband interleaved with “all zeros” waveform can be downloaded here to segment #2

:NCO:SIXDb1 ON % This will increase NCO1 amplitude by 6dB

:NCO:CFRequency1 0.0E9 % NCO1 set to DC.

:NCO:PHASe1 0.0 % NCO1 Phase is set to 0 for I samples

Proteus_DUC_Primer Rev. 1.0

Confidential | 30

:SOURce:VOLT 0.5 % Output amplitude in Volts

:FUNCtion:MODE:SEGMent 2 % Segment #1 is used for generation as an example

:OUTPut ON % Output for the selected channel is activated

:FREQuency:RASTer 9.0E9 % Any compatible DAC sampling rate can be set now

2.4 Resampling

In the previous discussions, baseband data is calculated according to the previously defined baseband
sample rate (SRBB), which can be calculated from the DAC sample rate and the interpolation factor being
used in the DUC, as shown in expression (1) above. Samples calculated in this way can be directly
downloaded to the waveform memory for generation. However, in some cases, the baseband sample rate
may be defined independently, or it cannot be freely selected:

1. Baseband waveform data is generated by some mathematical or application-oriented package
where sample rate may be internally selected to reduce the calculation time for complex and
long waveforms and/or because some sampling rate is more convenient to obtain faster, more
accurate results, The lates is especially true for OFDM signals where the baseband IQ waveforms
are obtained by applying the IFFT to a signal defined in the frequency domain with some specific
frequency resolution, which translates automatically to a time-domain sample rate.

2. Baseband waveform data has been captured by some instruments running at their own sample
rates. Examples of these include VSAs, DSOs, or RF Recorders.

Sometimes playing with the selection of the DAC sample rate and interpolation factors, it is possible to
just use the already available waveform data for generation. More often, this strategy is not possible as
there is no way to adapt the settings of the DUC and the DAC to the existing waveform data and obtain a
valid quality signal. This does not mean that the waveform cannot be used for generation using the DUC.
In fact, the only important parameter that enables the generation of any waveform with the DUC is its
modulation bandwidth. If the modulation BW falls within the limits of the DUC, then the waveform can
be adapted to any valid baseband sampling rate through a process called resampling. Resampling can
increase (up-sampling) or reduce (down-sampling) the sample rate of the input waveform. In fact,
interpolation is just one example of up-sampling.
Resampling transforms the sampling rate of a waveform without modifying the signal in the time or
frequency domains. When applied to AWGs, this is equivalent to transform the waveform length while
keeping the same time window. For a waveform sampled at a given sample rate (SR) with a given
waveform length (WL), a new waveform length (WL’) can be calculated for any new sample rate (SR’):

WL’ = WL x SR / SR’ (28)

The expression above does not guarantee that WL’ will be an integer. The most practical way to handle
this issue is by modifying the above expression to

WL’’ = floor(WL’) = round(WL x SR / SR’) (29)

The time window will not be the same that the original if WL’ was not an integer. In order to keep the
original time window and the same signal in both the time and the frequency domain, the actual final
sample rate (SR’’) must be modified to

SR’’ = SR’ x WL / WL’’ (30)

Using the floor function in () will make sure that SR’’ <= SR’ as typically SR’ is the maximum sample rate
for a given IQ Mode and interpolation factor, so it can be reduced but not increased.

Proteus_DUC_Primer Rev. 1.0

Confidential | 31

As WL and WL’’ are integers, they can be expressed as follows:

W/W’’ = N / D (31)

The first step is finding the non-reducible fraction equivalent to N/D

N’ = N / gcd(N,D), D’ = D / gcd(N,D) (32)

The reason to reduce the fraction is to simplify some calculations. Once N’ and D’ are known, the next
operation is performing a zero-padding with a N’-to-1 factor, see figure below.

Figure 2.4 Traditional resampling algorithm are quite similar to interpolation when the input and

ouput sampling rates have a N/D fractional ratio. The main difference is the resampling filter (same
for upsampling and lower frequency cutoff for downsampling) and the addition of the decimation

process. Here, an example of N/D = 5/8 resampling is shown. The main problem with this
methodology is that it can result in huge intermediate waveforms and take a very long time to

calculate.

The temporary waveform will have a sampling rate equal to N’ x SR. The next step would be applying an
ideal interpolation filter to obtain the intermediate samples. Then, an effective, linear-phase, low-pass
filter should be applied to the interpolated signal to limit the bandwidth of the waveform to SR’’/2 (the
new Nyquist Frequency). If the bandwidth of the waveform is strictly lower than SR’’/2, the low-pass filter
may not be necessary. The interpolation filter and the low-pass filter can be combined in a single step,
speeding up calculations. This combination can be called “resampling filter”. Once the signal is filtered (so
there is nothing beyond the SR’’/2 frequency) the final SR’’ frequency can be obtained by simply
decimating the waveform by a D’ factor (so one every D’ samples are preserved).
Using the above scheme is not practical when N’ and D’ are big numbers and the input waveform is long.
The initial up-sampling process may result in an extremely long intermediate waveform so the computer
can run out of memory or be forced to use the much slower virtual memory. Even if the required
intermediate data can be handled by the computer, calculation time may be unacceptable, especially
when the waveform must be calculated at runtime. In 4 Appendix 1 – MATLAB Programming Example an
alternative resampling algorithm is implemented as a MATLAB function. This algorithm calculates directly

Proteus_DUC_Primer Rev. 1.0

Confidential | 32

the output samples without the described zero-padding, interpolation, antialiasing filter, and decimation
process so there are not intermediate waveforms. A resampling filter combining the ideal interpolator
and the antialiasing filter is applied and it works just the same when the sampling rate must be increased
or decreased. Calculation speed for this algorithm does not depend on the N’ factor.
To better illustrate this procedure, a real case will be analyzed. In this example a 2GHz BW 802.11ad OFDM
signal will be generated using a Proteus P9484M AWG, see figure below.

Figure 2.5 In this simulation, an 802.11ad signal calculated at the OFDM sampling rate (2640MS/s) is

resampled to be generated by Proteus at 9GS/s in the DUC mode, IQ Mode HALF, and 4X
interpolation. This results in a target SRBB of 2.25GS/s. once the resampling algorithm is applied, all

the information of the signal is preserved (almost 2GHz Bandwidth). The resulting SRBB is
2248.0972MS/s after correcting it given the waveform length granularity that must be applied.

Given the modulation bandwidth involved, the highest sampling rate, 9GS/s will be selected. For this
signal, the IQ mode ONE is not sufficient as modulation BW, at 9GS/s and 8X interpolation factor, is around
1GHz. Instead, the IQ mode TWO will be used. This mode enables the X4 interpolation factor, so the
available modulation BW exceeds the 2GHz barrier. The target baseband sample rate will be 9GS/s / 4 =
2.25GS/s. To generate the baseband signal, the WLAN Toolbox from MATLAB will be used. Generating a
RF packet with this toolbox is straightforward. The calculation process for the complex (IQ) baseband
waveform data is made using the native sampling rate for the OFDM’s IFFT, 2.64GS/s. As the maximum
sampling rate for the IQ baseband signals in the mode TWO is 2.25GS/s, the waveform must be resampled

Proteus_DUC_Primer Rev. 1.0

Confidential | 33

(downsampled in this case) from 2.64GS/s down to 2.25GS/s. In this example, the input waveform (a single
802.11ad packet) from MATLAB is made of 23,712 samples. This means that the Time Window (TW) for it
is

TW = 23,712 / 2.64GS/s = 8.981818s

For waveform length granularity being 32 samples, (IQ mode TWO uses non-interleaved I/Q waveforms),
to get about the same TW at 2.25GS/s, Waveform Length (WL´) must be

WL’ = floor(23,712 x 2.25 / (2.64 x 32)) x 32 = 20,192

In order to get exactly the same Time Window, the 2.25GS must be corrected according to the WL’

SRBB’ = SRBB x WL’ / WL = 2.64GS/s x 20,192 / 23,712 = 2.2481GS/s

And SRDAC will be

SRDAC = SRBB x IF = 2.2481 x 4 = 8.9924GS/s

As WL is 23,172 and WL’ is 20,192, the zero-padding (N’) and the decimation (D’) factor will be

N’ = 20,192 / 4 = 5,048, D’ = 23,172 / 4 = 5,793, gcd(20,192, 23,172)

= 4

If the traditional resampling scheme is used, the length intermediate waveform (WL’’) would be

WL’’ = WL’ x N’ = 20,192 x 5,048 = 101,929,216 samples

Even for a relatively short waveform, calculations may be rather long and memory requirements very
high. Resampling can be a dangerous and difficult when the sample rate for the original waveform is too
close to twice its bandwidth, see figure below.

Proteus_DUC_Primer Rev. 1.0

Confidential | 34

Figure 2.6 Resampling when the bandwidth of the input signal is close, equal, or higher than the final

SRBB will result in the linear distortion of the high frequency components and, eventually, in some
image interference. Here a multi-tone signal with BW close to the target SRBB / 2. In the left, the

multi-tone signal lies within the bandwidth of the interpolation filter with maximum flatness. In the
right, although all the carriers are preserved at an slightly lower final sampling rate, the highest

frequency tones show the effects of the resampling filter’s roll off. The roll off of the resampling filter
can be controlled by the number of taps so it can be more effective at the expense of calculation time.

The purpose of the resampling filter is to remove the images in the resampled waveform. Ideally, this filter
should be a perfect “brick-wall” filter. Any real filter will approximate the ideal one and it will limit the
available BW for the input waveform. Typically, the resampling filter is designed to provide a high enough
useful bandwidth for the input waveform while making sure that the attenuation of the images is high
enough. The useful bandwidth and the image attenuation depends on the number of taps of the
resampling filter and calculation time for the resampled waveform is proportional to the number of taps.
Resampling filters must be designed in such a way that the roll off is as gentle as possible while keeping
the flatness over a sufficient portion of the first Nyquist Zone. As waveforms to resample must be
bandwidth limited to a given fraction of the Nyquist bandwidth, the resampling filter roll-off can go
beyond the Nyquist frequency so the required attenuation at the stop band is reached before any
potential image shows up. This helps to increase the useful portion of the first Nyquist Zone, reduce the
number of taps of the filter, or a combination of both effects.

Proteus_DUC_Primer Rev. 1.0

Confidential | 35

3 Related Documentation
• Proteus Programming Manual

• Proteus Module User Manual

• Wave Design Studio User Manual

• Direct Generation/Acquisition of Microwave Signals, Tabor White Paper

• Effective Number of Bits for Arbitrary Waveform Generators, Tabor Application Note

• Digital Frequency Synthesis Demystified, Bar-Giora Goldberg

Proteus_DUC_Primer Rev. 1.0

Confidential | 36

4 Appendix 1 – MATLAB Programming
Example

% Baseband DUC example

% This is an example of how to generate signals and RF modulated signals

% simultaneously with the Proteus AWT. A complex modulated RF signal is

% generated by one channel and the corresponding envelope signal is

% generated by another channel.

clear;

close all;

clear variables;

clear global;

clc;

% Define IP Address for Target Proteus device descriptor

% VISA "Socket-Based" TCP-IP Device. Socket# = 5025

ipAddr = '127.0.0.1'; %'127.0.0.1'= Local Host; % your IP here

pxiSlot = 0;

% Instrument setup

cType = "LAN"; %"LAN" = VISA or "DLL" = PXI

if cType == "LAN"

 connPar = ipAddr;

else

 connPar = pxiSlot; % Your slot # here, o for manual selection

end

paranoia_level = 0; % 0, 1 or 2

% Open Session and load libraries

[inst, admin, model, slotNumber] = ConnecToProteus(cType, connPar,

paranoia_level);

% Report model

fprintf('Connected to: %s, slot: %d\n', model(1), slotNumber(1));

% Reset AWG

inst.SendScpi('*CLS;*RST');

% Get options using the standard IEEE-488.2 Command

optstr = getOptions(inst);

% AWG Settings

duc_iq_mode = 1; % 0 = HALF, 1 = ONE, 2 = TWO,

3 = NCO

sample_rate_dac = 9E9;

rf_channel = 1;

rf_segment = 1;

baseband_channel = 3;

baseband_segment = 3;

Proteus_DUC_Primer Rev. 1.0

Confidential | 37

% Type of signal for test

% 1 = 802.11ax, 2 = 802.11ad, 3 = Multi-Tone, 4 = QAM

signal_type = 1;

carrier_freq = 2.412E9;

carrier_freq_2 = 2.0E9; % For IQ Mode 2

baseband_mode = 2; % 1 = envelope, 2 = clock

(QAM)

% Envelope Tracking Settings

minimum_pwr = -20.0; % dB vs. peak power

smoothing_factor = 1000;

% Clock processing only makes sense for QAM

if signal_type ~= 4 && baseband_mode == 2

 baseband_mode = 1;

end

fprintf(1, 'BASEBAND WAVEFORM CALCULATION\n');

% Baseband waveform parameter definition

switch signal_type

 case 1

 interpolation_factor = 8;

 actual_granularity = 16;

 oversampling = 2;

 smoothing_factor = 0.001;

 if baseband_mode == 2

 baseband_mode = 1;

 end

 [wfm_in, sample_rate_bb_in] = Get_Wlan_ax(oversampling);

 wfm_in_2 = wfm_in;

 case 2

 interpolation_factor = 4;

 actual_granularity = 32;

 smoothing_factor = 0.005;

 if baseband_mode == 2

 baseband_mode = 1;

 end

 [wfm_in, sample_rate_bb_in] = Get_Wlan_ad;

 wfm_in_2 = wfm_in;

 case 3

 interpolation_factor = 8;

 actual_granularity = 16;

 num_of_tones = 40;

 offset_tone = 15;

 spacing = 1E6;

 oversampling = 1.1;

 smoothing_factor = 1000; %0.05

 [wfm_in, sample_rate_bb_in] = Get_Multi_Tone(num_of_tones,

...

Proteus_DUC_Primer Rev. 1.0

Confidential | 38

offset_tone,...

 spacing, ...

 oversampling);

 wfm_in_2 = wfm_in;

 case 4

 interpolation_factor = 8;

 actual_granularity = 32;

 % modType Modulation

 % 1 QPSK

 % 2 QAM16

 % 3 QAM32

 % 4 QAM64

 % 5 QAM128

 % 6 QAM256

 % 7 QAM512

 % 8 QAM1024

 modulation_type = 1; % QPSK

 num_of_symbols = 2^11;

 symbol_rate = 100E6; %50E6

 filter_type = 'sqrt'; % 'normal' or 'sqrt'

 roll_off = 0.15;

 oversampling = 6;

 smoothing_factor = 0.001;

 [wfm_in, sample_rate_bb_in] = Get_Qam(modulation_type, ...

 num_of_symbols, ...

 symbol_rate, ...

 filter_type,...

 roll_off, ...

 oversampling);

 % Second baseband waveform for IQ Mode 2. It must be consistent in

 % sampling rate and time window with first waveform

 modulation_type_2 = 2; % 16QAM

 num_of_symbols_2 = 2^12; % Twice the symbols

 symbol_rate_2 = 100E6; %Twice the baud rate

 filter_type_2 = 'sqrt'; % 'normal' or 'sqrt'

 roll_off_2 = 0.25;

 oversampling_2 = 3; % Half the oversampling

 smoothing_factor = 0.001;

 [wfm_in_2, sample_rate_bb_in_2] = Get_Qam(modulation_type_2, ...

 num_of_symbols_2, ...

 symbol_rate_2, ...

 filter_type_2,...

 roll_off_2, ...

 oversampling_2);

 % For QAM and clock baseband signal, clock waveform must be

calculated

 if baseband_mode == 2

 baseband_wfm = Get_Qam_Clock(num_of_symbols, ...

 roll_off, ...

 oversampling,...

 4);

Proteus_DUC_Primer Rev. 1.0

Confidential | 39

 end

end

% Resampling must be carrier out for the DUC baseband sampling rate

sample_rate_bb_out = sample_rate_dac / interpolation_factor;

wfm_length_in = length(wfm_in);

%Calculation of lenght of the interpolated waveform

wfm_length_out = floor(wfm_length_in * sample_rate_bb_out /...

 (sample_rate_bb_in * actual_granularity)) * actual_granularity;

fprintf(1, 'BASEBAND WAVEFORM RESAMPLING\n');

%%%%%%%%%%%%%%%%%%%%% RESAMPLING %%%%%%%%%%%%%%%%%%%%%%%%%

wfm_out = myResampling(wfm_in, wfm_length_out, true, 60);

wfm_out_2 = myResampling(wfm_in_2, wfm_length_out, true, 60);

if signal_type == 4 && baseband_mode == 2

 % Clock waveform resampling

 baseband_wfm = myResampling(baseband_wfm, wfm_length_out, true, 60);

else

 % Get envelope tracking waveform from RF waveform

 [baseband_wfm, ref_envelope] = Get_Envelope(wfm_out, ...

 smoothing_factor, ...

 minimum_pwr);

end

% Sample rate must be corected to compensate for the timing error

% introduced by the granularity requirements

actual_dac_sample_rate = wfm_length_out * interpolation_factor *...

 sample_rate_bb_in / wfm_length_in;

% Graph calculated waveforms in a proper way

fprintf(1, 'BASEBAND WAVEFORM GRAPHS\n');

if baseband_mode == 1

 % Show RF waveform in graph #1

 % And raw envelope and smoothed envelope in Graph #2

 DrawEnvelope(wfm_out, ...

 baseband_wfm, ...

 ref_envelope, ...

 sample_rate_bb_out);

else

 % Show unfiltered IQ and eye diagram in the top

 % and filtered IQ and eye diagram in the bottom

 DrawEyeDiagram(3,...

 1000, ...

 actual_dac_sample_rate / interpolation_factor, ...

 symbol_rate, ...

 roll_off, ...

 wfm_out, ...

 baseband_wfm);

end

Proteus_DUC_Primer Rev. 1.0

Confidential | 40

%%%%%%%%%%%%%%%%%%%%%%%%% DOWNLOAD RF WAVEFORM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf(1, 'RF WAVEFORM DOWNLOAD AND ACTIVATION\n');

% All previous waveforms will be deleted from waveform memory

inst.SendScpi(':TRAC:DEL:ALL');

% Format and download RF Signal

switch duc_iq_mode

 case 0

 result = SendIqmHalfWfm(inst,...

 actual_dac_sample_rate,...

 interpolation_factor,...

 rf_channel,...

 rf_segment,...

 carrier_freq,...

 0.0,...

 true,...

 wfm_out,...

 16);

 case 1

 result = SendIqmOneWfm(inst,...

 actual_dac_sample_rate,...

 interpolation_factor,...

 rf_channel,...

 rf_segment,...

 carrier_freq,...

 0.0,...

 true,...

 wfm_out,...

 16);

 result = SendIqmOneWfm(inst,...

 actual_dac_sample_rate,...

 interpolation_factor,...

 rf_channel + 1,...

 rf_segment + 1,...

 carrier_freq,...

 -90.0,...

 true,...

 wfm_out,...

 16);

 case 2

 result = SendIqmTwoWfm(inst,...

 actual_dac_sample_rate,...

 interpolation_factor,...

 rf_channel,...

 rf_segment,...

 carrier_freq,...

 carrier_freq_2,...

 0.0,...

 0.0,...

 true,...

 wfm_out,...

 wfm_out_2,...

 16);

Proteus_DUC_Primer Rev. 1.0

Confidential | 41

 case 3

 SetNco(inst,...

 sample_rate_dac,...

 rf_channel,...

 carrier_freq,...

 0.0,...

 true);

% for fr = 1E6:1E6:4500E6

% inst.SendScpi(sprintf(':NCO:CFR1 %f', fr));

% end

end

%%%%%%%%%%%%%%%%%%%%%%%%% DOWNLOAD BB WAVEFORM

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Format and download Baseband (Envelope or Clock) Signal

fprintf(1, 'BASEBAND WAVEFORM DOWNLOAD AND ACTIVATION\n');

switch duc_iq_mode

 case 0

 result = SendIqmHalfWfm(inst,...

 actual_dac_sample_rate,...

 interpolation_factor,...

 baseband_channel,...

 baseband_segment,...

 0.0,...

 0.0,...

 true,...

 baseband_wfm,...

 16);

 case 1

 result = SendIqmOneWfm(inst,...

 actual_dac_sample_rate,...

 interpolation_factor,...

 baseband_channel,...

 baseband_segment,...

 0.0,...

 0.0,...

 true,...

 baseband_wfm,...

 16);

end

% It is recommended to disconnect from instrument at the end

if cType == "LAN"

 inst.Disconnect();

else

 admin.CloseInstrument(inst.InstrId);

 admin.Close();

end

Proteus_DUC_Primer Rev. 1.0

Confidential | 42

function result = SendIqmOneWfm(inst,...

 samplingRate,...

 interpol,...

 channel,...

 segment,...

 cfr,...

 phase,...

 apply6db,...

 myWfm,...

 dacRes)

 % format Wfm and normalize waveform

 %myWfm = MyProteusInterpolation(myWfm, interpol, true);

 myWfm = NormalIq(myWfm);

 myWfm = Interleave(real(myWfm), imag(myWfm));

 myWfm = myQuantization(myWfm, dacRes, 1);

 % Select Channel

 inst.SendScpi(sprintf(':INST:CHAN %d', channel));

 inst.SendScpi([':FREQ:RAST ' num2str(2.5E9)]);

 % Interpolation factor for I/Q waveforms

 switch interpol

 case 2

 inst.SendScpi(':SOUR:INT X2');

 case 4

 inst.SendScpi(':SOUR:INT X4');

 case 8

 inst.SendScpi(':SOUR:INT X8');

 end

 % DAC Mode set to 'DUC' and IQ Modulation mode set to 'ONE'

 inst.SendScpi(':MODE DUC');

 inst.SendScpi(':IQM ONE');

 inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

 fprintf(1, sprintf('DOWNLOADING WAVEFORM: %d samples\n',

length(myWfm)));

 result = SendWfmToProteus(inst,...

 samplingRate,...

 channel,...

 segment,...

 myWfm,...

 dacRes,...

 false);

 fprintf(1, 'WAVEFORM DOWNLOADED!\n');

 clear myWfm;

 % Select segment for generation

Proteus_DUC_Primer Rev. 1.0

Confidential | 43

 fprintf(1, 'SETTING AWG OUTPUT\n');

 inst.SendScpi(sprintf(':FUNC:MODE:SEGM %d', segment));

 % Output volatge set to MAX

 inst.SendScpi(':SOUR:VOLT MAX');

 % NCO set-up

 % 6dB IQ Modulation gain applied

 if apply6db

 inst.SendScpi(':NCO:SIXD1 ON');

 else

 inst.SendScpi(':NCO:SIXD1 OFF');

 end

 % NCO frequency and phase setting

 inst.SendScpi(sprintf(':NCO:CFR1 %d', cfr));

 inst.SendScpi(sprintf(':NCO:PHAS1 %d', phase));

 % Activate outpurt and start generation

 inst.SendScpi(':OUTP ON');

 fprintf(1, 'SETTING SAMPLING CLOCK\n');

 % Set sampling rate for AWG as defined in the preamble.

 inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

end

function result = SendIqmHalfWfm(inst,...

 samplingRate,...

 interpol,...

 channel,...

 segment,...

 cfr,...

 phase,...

 apply6db,...

 myWfm,...

 dacRes)

 myWfm = NormalIq(myWfm);

 myWfmI = real(myWfm);

 myWfmI = myQuantization(myWfmI, dacRes, 1);

 myWfmQ = imag(myWfm);

 myWfmQ = myQuantization(myWfmQ, dacRes, 1);

 % Channel I is 2N - 1 and Channel Q is 2N

 % If channel is even, then base channle number is corrected

 if mod(channel, 2) == 0

 channel = channel - 1;

 end

 % Set temporary sampling rate for AWG.

 inst.SendScpi([':SOUR:FREQ:RAST ' num2str(2.5E9)]);

 res = inst.SendScpi('*OPC?');

 % The Half mode requires setting two channels

 inst.SendScpi(sprintf(':INST:CHAN %d', channel));

Proteus_DUC_Primer Rev. 1.0

Confidential | 44

 inst.SendScpi(':MODE DUC');

 inst.SendScpi(':IQM HALF');

 % Interpolation factor for I/Q waveforms

 switch interpol

 case 2

 inst.SendScpi(':INT X2');

 case 4

 inst.SendScpi(':SOUR:INT X4');

 case 8

 inst.SendScpi(':SOUR:INT X8');

 end

 inst.SendScpi(sprintf(':INST:CHAN %d', channel + 1));

 inst.SendScpi(':SOUR:MODE DUC');

 inst.SendScpi(':SOUR:IQM HALF');

 % Interpolation factor for I/Q waveforms

 switch interpol

 case 2

 inst.SendScpi(':SOUR:INT X2');

 case 4

 inst.SendScpi(':SOUR:INT X4');

 case 8

 inst.SendScpi(':SOUR:INT X8');

 end

 inst.SendScpi([':SOUR:FREQ:RAST ' num2str(samplingRate)]);

 % DAC Mode set to 'DUC' and IQ Modulation mode set to 'ONE';

 % Waveform Downloading

 % ********************

 fprintf(1, 'DOWNLOADING WAVEFORM I\n');

 result = SendWfmToProteus(inst,...

 samplingRate,...

 channel,...

 segment,...

 myWfmI,...

 dacRes,...

 false);

 fprintf(1, 'DOWNLOADING WAVEFORM Q\n');

 result = SendWfmToProteus(inst,...

 samplingRate,...

 channel + 1,...

 segment + 1,...

 myWfmQ,...

 dacRes,...

Proteus_DUC_Primer Rev. 1.0

Confidential | 45

 false);

 fprintf(1, 'WAVEFORMS DOWNLOADED!\n');

 clear myWfm;

 % Select segment for generation

 fprintf(1, 'SETTING AWG OUTPUT\n');

 % Q Channel

 inst.SendScpi(sprintf(':INST:CHAN %d', channel + 1));

 inst.SendScpi(sprintf(':FUNC:MODE:SEGM %d', segment + 1));

 % NCO frequency and phase setting

 inst.SendScpi(sprintf(':SOUR:NCO:CFR1 %d', cfr));

 inst.SendScpi(sprintf(':SOUR:NCO:PHAS1 %d', phase));

 if apply6db

 inst.SendScpi(':SOUR:NCO:SIXD1 ON');

 else

 inst.SendScpi(':SOUR:NCO:SIXD1 OFF');

 end

 % Output volatge set to MAX

 inst.SendScpi(':SOUR:VOLT 0.5');

 % Activate outpurt and start generation

 inst.SendScpi(':OUTP ON');

 % I Channel is set up in the end as this is the physical active output

 % I Channel

 inst.SendScpi(sprintf(':INST:CHAN %d', channel));

 inst.SendScpi(sprintf(':FUNC:MODE:SEGM %d', segment));

 % NCO frequency and phase setting

 inst.SendScpi(sprintf(':SOUR:NCO:CFR1 %d', cfr));

 inst.SendScpi(sprintf(':SOUR:NCO:PHAS1 %d', phase));

 if apply6db

 inst.SendScpi(':SOUR:NCO:SIXD1 ON');

 else

 inst.SendScpi(':SOUR:NCO:SIXD1 OFF');

 end

 % Output volatge set to MAX

 inst.SendScpi(':SOUR:VOLT 0.5');

 % Activate outpurt and start generation

 inst.SendScpi(':OUTP ON');

 fprintf(1, 'SETTING SAMPLING CLOCK\n');

 % Set sampling rate for AWG as defined in the preamble.

 inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

end

function result = SendIqmTwoWfm(inst,...

 samplingRate,...

 interpol,...

 channel,...

 segment,...

 cfr1,...

 cfr2,...

Proteus_DUC_Primer Rev. 1.0

Confidential | 46

 phase1,...

 phase2,...

 apply6db,...

 myWfm1,...

 myWfm2,...

 dacRes)

 [myWfm1, myWfm2] = NormalIq2(myWfm1, myWfm2);

 myWfm = formatWfm2(myWfm1, myWfm2);

 % Select Channel

 inst.SendScpi(sprintf(':INST:CHAN %d', channel));

 inst.SendScpi([':FREQ:RAST ' num2str(2.5E9)]);

 % Interpolation factor for I/Q waveforms

 switch interpol

 case 2

 inst.SendScpi(':SOUR:INT X2');

 case 4

 inst.SendScpi(':SOUR:INT X4');

 case 8

 inst.SendScpi(':SOUR:INT X8');

 end

 % DAC Mode set to 'DUC' and IQ Modulation mode set to 'ONE'

 % DAC Mode set to 'DUC' and IQ Modulation mode set to 'TWO'

 inst.SendScpi(':MODE DUC');

 inst.SendScpi(':IQM TWO');

 inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

 fprintf(1, sprintf('DOWNLOADING WAVEFORM: %d samples\n',

length(myWfm)));

 result = SendWfmToProteus(inst,...

 samplingRate,...

 channel,...

 segment,...

 myWfm,...

 dacRes,...

 false);

 fprintf(1, 'WAVEFORM DOWNLOADED!\n');

 clear myWfm;

 % Select segment for generation

 fprintf(1, 'SETTING AWG OUTPUT\n');

 inst.SendScpi(sprintf(':FUNC:MODE:SEGM %d', segment));

 % Output volatge set to MAX

 inst.SendScpi(':SOUR:VOLT 0.5');

Proteus_DUC_Primer Rev. 1.0

Confidential | 47

 % NCO set-up

 % 6dB IQ Modulation gain applied

 if apply6db

 inst.SendScpi(':NCO:SIXD1 ON');

 inst.SendScpi(':NCO:SIXD2 ON');

 else

 inst.SendScpi(':NCO:SIXD1 OFF');

 inst.SendScpi(':NCO:SIXD2 OFF');

 end

 % NCO frequency and phase setting

 inst.SendScpi(sprintf(':NCO:CFR1 %d', cfr1));

 inst.SendScpi(sprintf(':NCO:CFR2 %d', cfr2));

 inst.SendScpi(sprintf(':NCO:PHAS1 %d', phase1));

 inst.SendScpi(sprintf(':NCO:PHAS2 %d', phase2));

 % Activate outpurt and start generation

 inst.SendScpi(':OUTP ON');

 fprintf(1, 'SETTING SAMPLING CLOCK\n');

 % Set sampling rate for AWG as defined in the preamble.

 inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

end

function SetNco(inst,...

 samplingRate,...

 channel,...

 cfr,...

 phase,...

 apply6db)

 % Select Channel

 inst.SendScpi(sprintf(':INST:CHAN %d', channel));

 fprintf(1, 'SETTING SAMPLING CLOCK\n');

 inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

 % DAC Mode set to 'NCO'

 inst.SendScpi(':MODE NCO');

 % 'NCO' Settings

 inst.SendScpi(sprintf(':NCO:CFR1 %d', cfr));

 inst.SendScpi(sprintf(':NCO:PHAS1 %d', phase));

 if apply6db

 inst.SendScpi(':NCO:SIXD1 ON');

 else

 inst.SendScpi(':NCO:SIXD1 OFF');

 end

 % Output volatge set to MAX

 inst.SendScpi(':SOUR:VOLT 0.5');

 % Activate outpurt and start generation

 inst.SendScpi(':OUTP ON');

 %fprintf(1, 'SETTING SAMPLING CLOCK\n');

 % Set sampling rate for AWG as defined in the preamble.

 %inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

Proteus_DUC_Primer Rev. 1.0

Confidential | 48

end

function result = SendWfmToProteus(inst,...

 samplingRate,...

 channel,...

 segment,...

 myWfm,...

 dacRes,...

 initialize)

 if dacRes == 16

 inst.SendScpi(':TRAC:FORM U16');

 else

 inst.SendScpi(':TRAC:FORM U8');

 end

 %Select Channel

 if initialize

 inst.SendScpi(':TRAC:DEL:ALL');

 inst.SendScpi([':FREQ:RAST ' num2str(samplingRate)]);

 end

 inst.SendScpi(sprintf(':INST:CHAN %d', channel));

 inst.SendScpi(sprintf(':TRAC:DEF %d, %d', segment, length(myWfm)));

 % select segmen as the the programmable segment

 inst.SendScpi(sprintf(':TRAC:SEL %d', segment));

 % format Wfm

% myWfm = myQuantization(myWfm, dacRes, 1);

 % Download the binary data to segment

 prefix = ':TRAC:DATA 0,';

 if (dacRes==16)

 myWfm = uint16(myWfm);

 myWfm = typecast(myWfm, 'uint8');

 else

 myWfm = uint8(myWfm);

 end

 tic;

 %res = inst.WriteBinaryData(':TRAC:DATA ', myWfm);

 res = inst.WriteBinaryData(prefix, myWfm);

 assert(res.ErrCode == 0);

% if dacRes == 16

% inst.SendBinaryData(prefix, myWfm, 'uint16');

% else

% inst.SendBinaryData(prefix, myWfm, 'uint8');

% end

 if initialize

 inst.SendScpi(sprintf(':SOUR:FUNC:MODE:SEGM %d', segment))

 % Output voltage set to MAX

Proteus_DUC_Primer Rev. 1.0

Confidential | 49

 inst.SendScpi(':SOUR:VOLT 0.5');

 % Activate outpurt and start generation

 inst.SendScpi(':OUTP ON');

 end

 result = length(myWfm);

end

function resampling_filter = GetResamplingFilter(

num_of_convolution_samples, ...

 resolution_of_filter,

...

 bw_fraction)

 % Creation of sinc lookup table

 % The NumOfConvolutionSamples paramters controls the quality of the

 % resampling filter in terms of roll-off and attenuation at the stop

 % band. The more, the better quality, the longer calculation time.

 % ResFilter sets the number of values per sample time to be included

in

 % the look-up table. The more, the better quality, the longer

 % calculation time.

 % bwFrac reduces de BW of the filter to avoid aliasing problems caused

 % by the roll-off of the resampling filter.

 % A resampling filter object is created with the lookup table for it

 % (just one side as it is symmetrical) and all the associated

 % parameters.

 resampling_filter.num_of_samples = num_of_convolution_samples;

 resampling_filter.resolution = resolution_of_filter;

 resampling_filter.bw_fraction = bw_fraction;

 sinc_length = floor(num_of_convolution_samples * resolution_of_filter

/ bw_fraction);

 resampling_filter.filter = 0:(sinc_length);

 resampling_filter.filter = resampling_filter.filter /

resolution_of_filter;

 resampling_filter.filter = resampling_filter.filter * bw_fraction;

 % Basic filter shape is ideal low pass filter (sinc)

 resampling_filter.filter = sinc(resampling_filter.filter);

 % Flattop window is applied to improve flatness and stop band

rejection

 windowed_filter = flattopwin(2 * sinc_length);

 windowed_filter = windowed_filter(sinc_length:end);

 resampling_filter.filter = resampling_filter.filter .*

windowed_filter';

end

function output_wfm = myResampling (input_wfm, ...

 output_wfm_length, ...

 is_circular, ...

 quality, ...

 resampling_filter)

% This funtion resamples the input waveform (inWfm) to generate a new

% waveform with a new length (outWl). New length can be longer

(upsampling)

% or shorter (downsampling) than the original one. The new waveform can be

Proteus_DUC_Primer Rev. 1.0

Confidential | 50

% selfconsistent for loop generation (isCirc == true) or not for singe

shot

% generation.

 input_wfm_length = length(input_wfm);

 % Sampling rate ratio (>1.0, upsampling)

 sampling_ratio = double(output_wfm_length) / double(input_wfm_length);

 % If resampling filter exists it is not calculated so time is saved

 % when calling the resampling function more than once

 if ~exist('resampling_filter', 'var') || isempty(resampling_filter)

 % Default parameters for resampling filter

 filter_resolution = 50000; %50000

 bw_fraction = 1.0; %0.98;

 if sampling_ratio < 1.0

 bw_fraction = 0.98;

 end

 resampling_filter = GetResamplingFilter(quality, ...

 filter_resolution, ...

 bw_fraction);

 end

 % The parameters of the resampling filter are part of the associated

 % object

 convolution_length = resampling_filter.num_of_samples;

 filter_resolution = resampling_filter.resolution;

 resampling_filter_length = length(resampling_filter.filter);

 bw_fraction = resampling_filter.bw_fraction;

 % For undersampling filter, the amplitude of the resampling filter

must

 % be corrected by the relative BW

 if sampling_ratio < 1.0

 % The distance for samples in the input (measured in samples of

the

 % output) must be corrected for undersampling as well in order to

 % preserve SFDR

 convolution_length = floor(convolution_length / (sampling_ratio *

bw_fraction));

 resampling_filter.filter = resampling_filter.filter *

(sampling_ratio * bw_fraction);

 else

 convolution_length = floor(resampling_filter.num_of_samples /

bw_fraction);

 end

 % Output waveform is initialized to "all zeros"

 output_wfm = zeros(1, output_wfm_length);

 % Convolution loop for each output sample

 if sampling_ratio >= 1.0

 mult_factor1 = bw_fraction * filter_resolution;

 else

 mult_factor1 = bw_fraction * filter_resolution * sampling_ratio;

 end

 for i = 0:(output_wfm_length - 1)

 % Index for the central sample to process in the input wfm

Proteus_DUC_Primer Rev. 1.0

Confidential | 51

 central_sample = i / sampling_ratio;

 central_sample_int = round(central_sample);

 % Contribution for all the participating samples form the input is

 % accumulated on the current output sample

 for j = (central_sample_int - convolution_length):...

 (central_sample_int + convolution_length)

 % Actual fractional distance to the input sample

 time_distance = abs(central_sample - j);

 % Distance is converted to a relative integer index to the

 % resampling filter (lookup table)

 time_distance = round(mult_factor1 * time_distance);

 % If convolution is circular the initial samples are used at

 % the end and the end samples are used at the beginning.

 input_wfm_index = j;

 if is_circular

 input_wfm_index = mod(input_wfm_index, input_wfm_length);

 end

 % If the pointer to the resampling filter is within teh limits

 % of the lookup table, the contribution of the input sample is

 % added to the current output sample

 if time_distance < resampling_filter_length && ...

 input_wfm_index >=0 && ...

 input_wfm_index < input_wfm_length

 output_wfm(i + 1) = output_wfm(i + 1) +...

 input_wfm(input_wfm_index + 1) * ...

 resampling_filter.filter(time_distance + 1);

 end

 end

 end

end

function output_wfm = LimitBW (input_wfm, ...

 bw_fraction)

 num_of_peak_samples = round(1.0 / bw_fraction);

 output_wfm = input_wfm;

 for k = 0:(length(input_wfm) - 1)

 ref_sample = k + 1;

 for j = (k - num_of_peak_samples):(k + num_of_peak_samples)

 current_sample = int32(mod(j, length(input_wfm)) + 1);

 if input_wfm(current_sample) > output_wfm(ref_sample)

 output_wfm(ref_sample) = input_wfm(current_sample);

 end

 end

 end

end

function [waveform, Fs] = Get_Wlan_ad()

% Generated by MATLAB(R) 9.14 (R2023a) and WLAN Toolbox 3.6 (R2023a).

% Generated on: 19-Apr-2023 18:52:47

 %% Generating 802.11ad waveform

 % 802.11ad configuration

Proteus_DUC_Primer Rev. 1.0

Confidential | 52

 dmgCfg = wlanDMGConfig('MCS', '16', ...

 'TrainingLength', 0, ...

 'TonePairingType', 'Static', ...

 'PSDULength', 1000, ...

 'AggregatedMPDU', false, ...

 'LastRSSI', 0, ...

 'Turnaround', false);

 num_of_packets = 1;

 idle_time = 2E-6;

 % input bit source:

 in = randi([0, 1], 1000, 1);

 % Generation

 waveform = wlanWaveformGenerator(in, dmgCfg, ...

 'NumPackets', num_of_packets, ...

 'IdleTime', idle_time, ...

 'WindowTransitionTime', 6.0606e-09, ...

 'ScramblerInitialization', 2);

 Fs = wlanSampleRate(dmgCfg); % Specify the sample rate of the waveform

in Hz

end

function [waveform, Fs] = Get_Wlan_ax(oversampling)

 % 802.11ax configuration

 heSUCfg = wlanHESUConfig('ChannelBandwidth', 'CBW160', ...

 'NumTransmitAntennas', 1, ...

 'NumSpaceTimeStreams', 1, ...

 'SpatialMapping', 'Direct', ...

 'PreHESpatialMapping', false, ...

 'MCS', 5, ...

 'DCM', false, ...

 'ChannelCoding', 'LDPC', ...

 'APEPLength', 100, ...

 'GuardInterval', 3.2, ...

 'HELTFType', 4, ...

 'UplinkIndication', false, ...

 'BSSColor', 0, ...

 'SpatialReuse', 0, ...

 'TXOPDuration', 127, ...

 'HighDoppler', false, ...

 'NominalPacketPadding', 0);

 % input bit source:

 in = randi([0, 1], 10000, 1);

 num_of_packets = 1;

 idle_time = 20E-6;

 % Generation

 waveform = wlanWaveformGenerator(in, heSUCfg, ...

 'NumPackets', num_of_packets, ...

 'IdleTime', idle_time, ...

Proteus_DUC_Primer Rev. 1.0

Confidential | 53

 'OversamplingFactor', oversampling, ...

 'ScramblerInitialization', 93, ...

 'WindowTransitionTime', 1e-07);

 Fs = oversampling * wlanSampleRate(heSUCfg, 'OversamplingFactor', 1);

end

function [waveform, Fs] = Get_Multi_Tone(num_of_tones, ...

 offset_tone,...

 spacing, ...

 oversampling)

 % Compute maximum frequency component in the signal

 max_freq = (num_of_tones - 1) * spacing / 2.0;

 max_freq = max_freq + spacing * offset_tone;

 % Sample rate for calcualtion will be twice the maximum freq x

 % oversampling factor

 Fs = oversampling * 2.0 * max_freq;

 % Tone frequency calculation

 tone_freq = 0:(num_of_tones - 1);

 tone_freq = tone_freq - (num_of_tones - 1.0) / 2.0;

 tone_freq = spacing * tone_freq;

 tone_freq = tone_freq + spacing * offset_tone;

 % Time window will be the minimum one: 1 / spacing

 % It must be double when the number of tones is even for symmetrical

 % spectrum around carrier frequency.

 if mod(num_of_tones,2) == 1

 time_window = 1.0 / spacing;

 else

 time_window = 2.0 / spacing;

 end

 % Waveform length must be an integer

 wfm_length = round(Fs * time_window);

 % Fs must be recalculated after rounding wavweform length

 Fs = wfm_length / time_window;

 % Time values for samples

 x_data = 0 :(wfm_length -1);

 x_data = x_data / Fs;

 % Phase distribution for PAPR reduction is selected. Newman = 2.

 tones_phase = PhaseDistribution(2, num_of_tones);

 % Waveform data is initialized to zero

 waveform = zeros(1, wfm_length);

 % The contribution of each tone is added to the waveform

 for k = 1 : num_of_tones

 waveform = waveform + ...

 exp(1i * (x_data * 2 * pi * tone_freq(k) + tones_phase(k)));

 end

end

function phase_table = PhaseDistribution(dist_type, number_of_tones)

 switch dist_type

 case 1

Proteus_DUC_Primer Rev. 1.0

Confidential | 54

 % Random

 phase_table = 2.0 * pi .* (rand(1, number_of_tones) - 0.5);

 case 2

 % Newman (near-optimal for equal amplitude tones)

 phase_table = 1:number_of_tones;

 phase_table = wrapToPi(-(pi / number_of_tones) .* ...

 (1.0 - phase_table .* phase_table));

 case 3

 % Rudin (near optimal for equal amplitude tones when number of

 % tones = 2^N)

 num_of_steps = int16(round(log(number_of_tones) / log(2)));

 if 2^num_of_steps < number_of_tones

 num_of_steps = num_of_steps + 1;

 end

 num_of_steps = num_of_steps - 1;

 phase_table(1:2) = 1;

 % Rudin sequence construction

 for n=1:num_of_steps

 m = int16(length(phase_table) / 2);

 phase_table = [phase_table, phase_table(1 : m),...

 -phase_table(m + 1 : 2 * m)];

 end

 % Conversion to radians

 phase_table = -0.5 * pi .* (phase_table(1 : number_of_tones) -

1);

 end

end

function [symbol] = getIqMap(data, bPerS)

 if bPerS == 5 % QAM32 mapping

 lev = 6;

 data = data + 1;

 data(data > 4) = data(data > 4) + 1;

 data(data > 29) = data(data > 29) + 1;

 elseif bPerS == 7 % QAM128 mapping

 lev = 12;

 data = data + 2;

 data(data > 9) = data(data > 9) + 4;

 data(data > 21) = data(data > 21) + 2;

 data(data > 119) = data(data > 119) + 2;

 data(data > 129) = data(data > 129) + 4;

 elseif bPerS == 9 % QAM512 mapping

 lev = 24;

 data = data + 4;

 data(data > 19) = data(data > 19) + 8;

 data(data > 43) = data(data > 43) + 8;

 data(data > 67) = data(data > 67) + 8;

Proteus_DUC_Primer Rev. 1.0

Confidential | 55

 data(data > 91) = data(data > 91) + 4;

 data(data > 479) = data(data > 479) + 4;

 data(data > 499) = data(data > 499) + 8;

 data(data > 523) = data(data > 523) + 8;

 data(data > 547) = data(data > 547) + 8;

 else

 lev = 2 ^ (bPerS / 2); % QPSK, QAM16, QAM64, QAM256, QAM1024

 end

 symbI = floor(data / lev);

 symbQ = mod(data, lev);

 lev = lev / 2 - 0.5;

 symbI = (symbI - lev) / lev;

 symbQ = (symbQ - lev) / lev;

 symbol = symbI + 1i * symbQ;

end

function dataOut = getRnData(nOfS, bPerS)

 maxVal = 2 ^ bPerS;

 dataOut = maxVal * rand(1, nOfS);

 dataOut = floor(dataOut);

 dataOut(dataOut >= maxVal) = maxVal - 1;

end

function out_vector = ZeroPadding(in_vector, oversampling)

 out_vector = zeros(1, oversampling * length(in_vector));

 out_vector(1:oversampling:length(out_vector)) = in_vector;

end

function [waveform, Fs] = Get_Qam(modulation_type, ...

 num_of_symbols, ...

 symbol_rate, ...

 filter_type,...

 roll_off, ...

 oversampling)

 % modType Modulation

 % 1 QPSK

 % 2 QAM16

 % 3 QAM32

 % 4 QAM64

 % 5 QAM128

 % 6 QAM256

 % 7 QAM512

 % 8 QAM1024

 bits_per_symbol = [2, 4, 5, 6, 7, 8, 9, 10];

 bits_per_symbol = bits_per_symbol(modulation_type);

 oversampling = round(oversampling);

 % Create IQ for QPSK/QAM

 % Get symbols in the range 1..2^bps and Map to IQ as Complex Symbol

 data = getRnData(num_of_symbols, bits_per_symbol);

 [waveform] = getIqMap(data, bits_per_symbol);

Proteus_DUC_Primer Rev. 1.0

Confidential | 56

 % Adapt I/Q sample rate to the Oversampling parameter

 waveform = ZeroPadding(waveform, oversampling);

 % Calculate baseband shaping filter

 % accuracy is the length of-1 the shaping filter

 accuracy = 512;

 %filter_type = 'sqrt'; % 'normal' or 'sqrt'

 baseband_filter = rcosdesign(roll_off, ...

 accuracy, ...

 oversampling, ...

 filter_type);

 % Apply filter through circular convolution and calculate Fs

 waveform = cconv(waveform, baseband_filter, length(waveform));

 Fs = symbol_rate * oversampling;

end

function [envelope_wfm, ref_envelope] = Get_Envelope(wfm_out,

smoothing_factor, minimum_pwr)

% ENVELOPE CALCULATION

 % Envelope wfm made from the module of the IQ complex wfm

 envelope_wfm = abs(wfm_out);

 % LPF

 envelope_wfm = LimitBW(envelope_wfm, smoothing_factor);

 envelope_wfm = movmean(envelope_wfm, 10);

 %envelope_wfm = LimitBW(envelope_wfm, bw_factor);

 % Minimum level processing

 minimum_pwr = max(envelope_wfm) * 10^(minimum_pwr / 20.0);

 envelope_wfm(envelope_wfm < minimum_pwr) = minimum_pwr;

 % Normalization so 0 will be mapped to the lowest DAC value and max is

 % mapped to +1.0. wfm_out is always positive

 if max(envelope_wfm) > 0.0

 envelope_wfm = 2.0 * (envelope_wfm / max(envelope_wfm) - 0.5);

 else

 envelope_wfm = envelope_wfm + 1.0;

 end

 ref_envelope = abs(wfm_out);

 if max(ref_envelope) > 0.0

 ref_envelope = 2.0 * (ref_envelope / max(ref_envelope) - 0.5);

 else

 ref_envelope = ref_envelope + 1.0;

 end

end

function waveform = Get_Qam_Clock(num_of_symbols, ...

 roll_off, ...

 oversampling, ...

 div_factor)

 oversampling = round(oversampling);

 div_factor = round(div_factor);

Proteus_DUC_Primer Rev. 1.0

Confidential | 57

 % Create IQ for QPSK/QAM

 % Get symbols in the range 1..2^bps and Map to IQ as Complex Symbol

 waveform = zeros(1, num_of_symbols);

 for k = 0:(div_factor - 1)

 waveform((k + 1):(2 * div_factor):length(waveform)) = 1.0;

 end

 for k = div_factor:(2 * div_factor - 1)

 waveform((k + 1):(2 * div_factor):length(waveform)) = -1.0;

 end

 % Adapt I/Q sample rate to the Oversampling parameter

 waveform = ZeroPadding(waveform, oversampling);

 % Calculate baseband shaping filter

 % accuracy is the length of-1 the shaping filter

 accuracy = 512;

 filter_type = 'sqrt'; % 'normal' or 'sqrt'

 baseband_filter = rcosdesign(roll_off, ...

 accuracy, ...

 oversampling, ...

 filter_type);

 % Apply filter through circular convolution and calculate Fs

 waveform = cconv(waveform, baseband_filter, length(waveform));

end

function DrawEnvelope(wfm_out, ...

 envelope_wfm, ...

 ref_envelope, ...

 sample_rate_bb_out)

 % Two plots

 tiledlayout(1,2);

 x0=100;

 y0=100;

 width=1000;

 height=800;

 set(gcf,'position',[x0,y0,width,height]);

 wfm_length_out = length(wfm_out);

 nexttile;

 x_data = 0 : (wfm_length_out - 1);

 x_data = x_data / sample_rate_bb_out;

 plot(x_data, real(wfm_out));

 hold;

 plot(x_data, imag(wfm_out));

 title(strcat('IQ Waveform:', num2str(wfm_length_out),' samples @',...

 num2str(sample_rate_bb_out / 1E6), 'MS/s'));

 xlabel('Seconds');

Proteus_DUC_Primer Rev. 1.0

Confidential | 58

 nexttile;

 plot(x_data, ref_envelope);

 hold;

 plot(x_data, envelope_wfm);

 ylim([-1.0 1.1]);

 title(strcat('Envelope Waveform:', num2str(wfm_length_out),' samples

@',...

 num2str(sample_rate_bb_out / 1E6), 'MS/s'));

 xlabel('Seconds');

end

function DrawEyeDiagram(eye_width, ...

 max_symbol_shown, ...

 sample_rate, ...

 symbol_rate, ...

 roll_off, ...

 wfm_in, ...

 clock_wfm)

 % For better graph accuracy, samples per symbol > = 100

 interpol_factor = ceil(sample_rate / symbol_rate);

 if interpol_factor < 100

 interpol_factor = ceil(100 / interpol_factor);

 new_wfm_length = interpol_factor * length(wfm_in);

 wfm_in = myResampling(wfm_in, new_wfm_length, true, 60);

 clock_wfm = myResampling(clock_wfm, new_wfm_length, true, 60);

 sample_rate = interpol_factor * sample_rate;

 end

 % Graph data definition

 size_window_in_samples = ceil(eye_width / symbol_rate * sample_rate);

 size_window_in_samples = ceil(size_window_in_samples / 2);

 symbol_shift = round(0.5 / symbol_rate * sample_rate);

 % Zero crossing for clock signal

 zero_crossings = zeros(1, max_symbol_shown);

 previous_state = clock_wfm(1);

 filter_type = 'sqrt'; % 'normal' or 'sqrt'

 baseband_filter = rcosdesign(roll_off, 60, ...

 round(sample_rate / symbol_rate) , filter_type);

 baseband_filter = baseband_filter / sum(baseband_filter);

 % Zero crossing processing

 counter = 1;

 for k = 2:length(clock_wfm)

 if clock_wfm(k) >= 0.0 && previous_state <= 0.0 ||...

 clock_wfm(k) <= 0.0 && previous_state >= 0.0

 zero_crossings(counter) = k - 1;

 previous_state = clock_wfm(k);

 if counter > max_symbol_shown

 break;

 else

 counter = counter + 1;

 end

Proteus_DUC_Primer Rev. 1.0

Confidential | 59

 end

 end

 % Four plots

 tiledlayout(2,2);

 x0 = 100;

 y0 = 100;

 width = 1000;

 height = 800;

 set(gcf,'position',[x0,y0,width,height]);

 nexttile;

 plot(wfm_in);

 hold;

 const_diagram = wfm_in(zero_crossings(2:counter - 2) + symbol_shift);

 scatter(real(const_diagram), imag(const_diagram), 20, [1, 1, 0],

'filled');

 max_ampl = max([max(abs(real(wfm_in))), max(abs(imag(wfm_in)))]);

 xlim([-max_ampl max_ampl]);

 ylim([-max_ampl max_ampl]);

 title('Constellation Unfiltered');

 nexttile;

 base_x_data = -size_window_in_samples:1:size_window_in_samples;

 base_x_data = base_x_data / sample_rate;

 hold_flag = true;

 for k = 1:counter

 if (zero_crossings(k) - size_window_in_samples) >= 1 &&...

 (zero_crossings(k) + size_window_in_samples) <=

length(wfm_in)

 plot(base_x_data, ...

 real(wfm_in(zero_crossings(k) - size_window_in_samples

+ symbol_shift:...

 zero_crossings(k) + size_window_in_samples

+ symbol_shift)));

 if hold_flag

 hold on;

 hold_flag = false;

 end

 end

 end

 title('Eye Diagram Unfiltered');

 xlabel('Symbol Period');

 nexttile;

 % Apply filter through circular convolution

 clock_wfm = cconv(clock_wfm, baseband_filter, length(clock_wfm));

 % Apply filter through circular convolution and calculate Fs

Proteus_DUC_Primer Rev. 1.0

Confidential | 60

 wfm_in = cconv(wfm_in, baseband_filter, length(wfm_in));

 counter = 1;

 for k = 2:length(clock_wfm)

 if clock_wfm(k) >= 0.0 && previous_state < 0.0 ||...

 clock_wfm(k) < 0.0 && previous_state >= 0.0

 zero_crossings(counter) = k;

 previous_state = clock_wfm(k);

 if counter > max_symbol_shown

 break;

 else

 counter = counter + 1;

 end

 end

 end

 plot(wfm_in);

 const_diagram = wfm_in(zero_crossings(2:counter - 2) + symbol_shift);

 hold;

 scatter(real(const_diagram), imag(const_diagram), 20, [1, 1, 0],

'filled');

 max_ampl = max([max(abs(real(wfm_in))), max(abs(imag(wfm_in)))]);

 xlim([-max_ampl max_ampl]);

 ylim([-max_ampl max_ampl]);

 title('Constellation Filtered');

 nexttile;

 hold_flag = true;

 for k = 1:counter

 if (zero_crossings(k) - size_window_in_samples) >= 1 &&...

 (zero_crossings(k) + size_window_in_samples) <=

length(wfm_in)

 plot(base_x_data, real(wfm_in(zero_crossings(k) -

size_window_in_samples + symbol_shift:...

 zero_crossings(k) + size_window_in_samples +

symbol_shift)));

 if hold_flag

 hold on;

 hold_flag = false;

 end

 end

 end

 title('Eye Diagram Filtered');

 xlabel('Symbol Period');

end

function [inst,...

Proteus_DUC_Primer Rev. 1.0

Confidential | 61

 admin,...

 modelName,...

 sId] = ConnecToProteus(cType, ...

 connStr, ...

 paranoia_level)

% Connection to target Proteus

% cType specifies API. "LAN" for VISA, "DLL" for PXI

% connStr is the slot # as an integer(0 for manual selection) or IP adress

% as an string

% Paranoia Level add additional checks for each transfer. 0 = no checks.

% 1 = send OPC?, 2 = send SYST:ERROR?

% It returns

% inst: handler for the selected instrument

% admin: administrative handler

% modelName: string with model name for selected instrument (i.e. "P9484")

% sId: slot number for selected instrument

 pid = feature('getpid');

 fprintf(1,'\nProcess ID %d\n',pid);

 dll_path = 'C:\\Windows\\System32\\TEPAdmin.dll';

 admin = 0;

 sId = 0;

 if cType == "LAN"

 try

 connStr = strcat('TCPIP::',connStr,'::5025::SOCKET');

 inst = TEProteusInst(connStr, paranoia_level);

 res = inst.Connect();

 assert (res == true);

 modelName = identifyModel(inst);

 catch ME

 rethrow(ME)

 end

 else

 asm = NET.addAssembly(dll_path);

 import TaborElec.Proteus.CLI.*

 import TaborElec.Proteus.CLI.Admin.*

 import System.*

 admin = CProteusAdmin(@OnLoggerEvent);

 rc = admin.Open();

 assert(rc == 0);

 try

 slotIds = admin.GetSlotIds();

 numSlots = length(size(slotIds));

 assert(numSlots > 0);

 % If there are multiple slots, let the user select one ..

 sId = slotIds(1);

Proteus_DUC_Primer Rev. 1.0

Confidential | 62

 if numSlots > 1

 fprintf('\n%d slots were found\n', numSlots);

 for n = 1:numSlots

 sId = slotIds(n);

 slotInfo = admin.GetSlotInfo(sId);

 if ~slotInfo.IsSlotInUse

 modelName = slotInfo.ModelName;

 if slotInfo.IsDummySlot && connStr == 0

 fprintf(' * Slot Number:%d Model %s [Dummy

Slot].\n', sId, modelName);

 elseif connStr == 0

 fprintf(' * Slot Number:%d Model %s.\n', sId,

modelName);

 end

 end

 end

 pause(0.1);

 if connStr == 0

 choice = input('Enter SlotId ');

 fprintf('\n');

 else

 choice = connStr;

 end

 sId = uint32(choice);

 slotInfo = admin.GetSlotInfo(sId);

 modelName = slotInfo.ModelName;

 modelName = strtrim(netStrToStr(modelName));

 end

 % Connect to the selected instrument ..

 should_reset = true;

 inst = admin.OpenInstrument(sId, should_reset);

 instId = inst.InstrId;

 catch ME

 admin.Close();

 rethrow(ME)

 end

 end

end

function model = identifyModel(inst)

 idnStr = inst.SendScpi('*IDN?');

 idnStr = strtrim(netStrToStr(idnStr.RespStr));

 idnStr = split(idnStr, ',');

 if length(idnStr) > 1

 model = idnStr(2);

 else

 model ='';

 end

end

function options = getOptions(inst)

Proteus_DUC_Primer Rev. 1.0

Confidential | 63

 optStr = inst.SendScpi('*OPT?');

 optStr = strtrim(netStrToStr(optStr.RespStr));

 options = split(optStr, ',');

end

function [str] = netStrToStr(netStr)

 try

 str = convertCharsToStrings(char(netStr));

 catch

 str = '';

 end

end

function retval = myQuantization (myArray, dacRes, minLevel)

 maxLevel = 2 ^ dacRes - 1;

 numOfLevels = maxLevel - minLevel + 1;

 retval = round((numOfLevels .* (myArray + 1) - 1) ./ 2);

 retval = retval + minLevel;

 retval(retval > maxLevel) = maxLevel;

 retval(retval < minLevel) = minLevel;

end

function outWfm = Interleave2(wfmI, wfmQ)

 wfmLength = length(wfmI);

 if length(wfmQ) < wfmLength

 wfmLength = length(wfmQ);

 end

 %wfmLength = 2 * wfmLength;

 outWfm = uint8(zeros(1, 2 * wfmLength));

 outWfm(1:2:(2 * wfmLength - 1)) = wfmI;

 outWfm(2:2:(2 * wfmLength)) = wfmQ;

end

function outWfm = formatWfm2(inWfm1, inWfm2)

%formatWfm2 This function formats data for two I/Q streams to be dwnloaded

%to a single segment in Proteus to be generated in the IQM Mode 'TWO'

% All waveforms must be properly normalized to the -1.0/+1.0 range.

% All waveforms must have the same length

 % Formatting requires to go through the following steps:

 % 1) quantize samples to 16-bit unsigned integers

 % 2) swap the LSB and MSB as MSBs will be sent first for this mode

 % 3) convert the uint16 array to an uint8 array of twice the size

 % Final wfm is MSB, LSB, MSB, LSB,...

 inWfmI1 = typecast(swapbytes(uint16(myQuantization(real(inWfm1), 16,

1))),'uint8');

Proteus_DUC_Primer Rev. 1.0

Confidential | 64

 inWfmQ1 = typecast(swapbytes(uint16(myQuantization(imag(inWfm1), 16,

1))),'uint8');

 inWfmI2 = typecast(swapbytes(uint16(myQuantization(real(inWfm2), 16,

1))),'uint8');

 inWfmQ2 = typecast(swapbytes(uint16(myQuantization(imag(inWfm2), 16,

2))),'uint8');

 % Sequence MSBI1, MSBQ1, MSBQ2, MSBI2, LSBI1, LSBQ1, LSBQ2, LSBI2

 % This is done in three interleaving steps

 outWfmI = Interleave2(inWfmI1, inWfmQ2);

 outWfm = Interleave2(inWfmQ1, inWfmI2);

 outWfm = Interleave2(outWfmI, outWfm);

 % Format as 16 bit integers as this is how waveforms are transferred

 outWfm = uint16(outWfm(1:2:length(outWfm))) + ...

 256 * uint16(outWfm(2:2:length(outWfm)));

end

function shifted_vector = ShiftVector(input_wfm, shifts)

 vector_l = length(input_wfm);

 shifts = shifts - 1;

 shifted_vector = input_wfm(mod((1:vector_l) + shifts, vector_l) + 1);

end

function zeroed_vector = InsertZeros(input_vector, isEven)

 if isEven

 zeroed_vector = zeros(1, 2 * length(input_vector));

 else

 zeroed_vector = zeros(1, 2 * length(input_vector) - 1);

 end

 zeroed_vector(1:2:length(zeroed_vector)) = input_vector;

end

function [interpol_filter, max_response] =

GetProteusInterpolFilter(interpolation_factor)

 basic_2x_filter_taps = [6, 0, -19, 0, 47, 0, -100, 0, 192, 0, -342,

0,...

 572, 0, -914, 0, 1409, 0, -2119, 0, 3152, 0, -4729, 0, 7420, 0,...

 -13334, 0, 41527, 65536, 41527, 0, -13334, 0, 7420, 0, -4729, 0,...

 3152, 0, -2119, 0, 1409, 0, -914, 0, 572, 0, -342, 0, 192, 0, -100,...

 0, 47, 0, -19, 0, 6];

 switch interpolation_factor

 case 2

 interpol_filter = basic_2x_filter_taps;

 case 4

 interpol_filter = InsertZeros(basic_2x_filter_taps, false);

 interpol_filter = conv(interpol_filter, basic_2x_filter_taps);

 case 8

Proteus_DUC_Primer Rev. 1.0

Confidential | 65

 interpol_filter = InsertZeros(basic_2x_filter_taps, false);

 interpol_filter = conv(interpol_filter, basic_2x_filter_taps);

 interpol_filter = InsertZeros(interpol_filter, false);

 interpol_filter = conv(interpol_filter, basic_2x_filter_taps);

 end

 % Filter normalization for 0dB gain at 0Hz

 interpol_filter = interpol_filter/sum(interpol_filter);

 interpol_filter = interpolation_factor * interpol_filter;

 % Worst case maximum output abs(amplitude) for

 max_response = 0.0;

 for k = 0:(interpolation_factor - 1)

 current_max_response =

sum(abs(interpol_filter((k+1):interpolation_factor:length(interpol_filter)

)));

 if current_max_response > max_response

 max_response = current_max_response;

 end

 end

end

function output_wfm = MyProteusInterpolation(input_wfm, interpol_factor,

apply_norm)

 % Function used in traditional resampling

 % Expansion by zero-padding

 output_wfm = zeros(1, interpol_factor * length(input_wfm));

 output_wfm(1:interpol_factor:end) = input_wfm;

 % "Ideal" Interpolation filter

 [interpol_filter, max_response] =

GetProteusInterpolFilter(interpol_factor);

 shifts = floor(length(interpol_filter) / 2);

 %convolution

 output_wfm = cconv(output_wfm, interpol_filter, length(output_wfm));

 output_wfm = ShiftVector(output_wfm, shifts);

 if apply_norm

 output_wfm = input_wfm / max(abs(output_wfm));

 end

end

function outWfm = NormalIq(wfm)

 maxPwr = max(abs(wfm));

 outWfm = wfm / maxPwr;

end

function [outWfm1, outWfm2] = NormalIq2(wfm1, wfm2)

 maxPwr = max(abs(wfm1) + abs(wfm2));

 outWfm1 = wfm1 / maxPwr;

 outWfm2 = wfm2 / maxPwr;

end

function outWfm = Interleave(wfmI, wfmQ)

Proteus_DUC_Primer Rev. 1.0

Confidential | 66

 wfmLength = length(wfmI);

 outWfm = zeros(1, 2 * wfmLength);

 outWfm(1:2:(2 * wfmLength - 1)) = wfmI;

 outWfm(2:2:(2 * wfmLength)) = wfmQ;

end

	Proteus DUC Primer
	Document Revision History
	Acronyms & Abbreviations
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Frequently Asked Questions

	2 Programming the DUC in Proteus
	2.1 Data Formatting and Downloading for the DUC
	2.2 Baseband Waveform Calculation for the Proteus DUC
	2.2.1 Interpolation-related Clipping

	2.3 IQ Waveforms Quantization
	2.4 Resampling

	3 Related Documentation
	4 Appendix 1 – MATLAB Programming Example

