Proteus Series Arbitrary
Waveform Transceiver

Programming Manual
Rev. 1.4

@TAEOR ELECTRONICS Proteus Programming Manual Rev. 1.4

Warranty Statement

Products sold by Tabor Electronics Ltd. are warranted to be free from defects in workmanship or
materials. Tabor Electronics Ltd. will, at its option, either repair or replace any hardware products
which prove to be defective during the warranty period. You are a valued customer. Our mission
is to make any necessary repairs in a reliable and timely manner.

Duration of Warranty

The warranty period for this Tabor Electronics Ltd. hardware is one year, except software and
firmware products designed for use with Tabor Electronics Ltd. Hardware is warranted not to fail
to execute its programming instructions due to defect in materials or workmanship for a period
of ninety (90) days from the date of delivery to the initial end user.

Return of Product

Authorization is required from Tabor Electronics before you send us your product for service or
calibration. Call your nearest Tabor Electronics support facility. A list is located on the last page of
this manual. If you are unsure where to call, contact Tabor Electronics Ltd. Tel Hanan, Israel at
972-4-821-3393 or via fax at 972-4-821-3388. We can be reached at: support@tabor.co.il

Limitation of Warranty

Tabor Electronics Ltd. shall be released from all obligations under this warranty in the event
repairs or modifications are made by persons other than authorized Tabor Electronics service
personnel or without the written consent of Tabor Electronics.

Tabor Electronics Ltd. expressly disclaims any liability to its customers, dealers and
representatives and to users of its product, and to any other person or persons, for special or
consequential damages of any kind and from any cause whatsoever arising out of or in any way
connected with the manufacture, sale, handling, repair, maintenance, replacement or use of said
products. Representations and warranties made by any person including dealers and
representatives of Tabor Electronics Ltd., which are inconsistent or in conflict with the terms of
this warranty (including but not limited to the limitations of the liability of Tabor Electronics Ltd.
as set forth above), shall not be binding upon Tabor Electronics Ltd. unless reduced to writing and
approved by an officer of Tabor Electronics Ltd. This document may contain flaws, omissions, or
typesetting errors. No warranty is granted nor liability assumed in relation thereto. The
information contained herein is periodically updated and changes will be incorporated into
subsequent editions. If you have encountered an error, please notify us at
support@taborelec.com. All specifications are subject to change without prior notice. Except as
stated above, Tabor Electronics Ltd. makes no warranty, express or implied (either in fact or by
operation of law), statutory or otherwise; and except to the extent stated above, Tabor Electronics
Ltd. shall have no liability under any warranty, express or implied (either in fact or by operation
of law), statutory or otherwise.

Proprietary Notice

This document and the technical data herein disclosed, are proprietary to Tabor Electronics, and
shall not, without express written permission of Tabor Electronics, be used, in whole or in part to
solicit quotations from a competitive source or used for manufacture by anyone other than Tabor
Electronics. The information herein has been developed at private expense and may only be used
for operation and maintenance reference purposes or for purposes of engineering evaluation and
incorporation into technical specifications and other documents, which specify procurement of
products from Tabor Electronics.

Confidential | 2

@maaa ELECTRONICS Proteus Programming Manual Rev. 1.4

Document Revision History

Revision Date Description Authors

1.4 2-Jul- e 13.4.1 Programming Example 3 — Updated. Joan
2023 e 13.5 Using the Digitizer to Capture Baseband and RF Signals — New. [Mercade

1.3 24-May- |e Release supporting WDS 1.7.050 or higher, SCPI Rev. 1.132, FPGA Jakob
2023 version 236 or higher. Apelblat

e Minor editing of text.

e Table 1-1 SCPI Common Mode Commands — New.

e 3.5 :XINStrument:MODE(?) — Changed to query only.

e :XINStrument:SYNChronize:ROLE(?) — New.

e 3.7 :XINStrument:SYNChronize:FOLLowers
<number_of follower_instruments>(?) — New.

e 3.12 :XINStrument:SYNChronize:STATe{OFF|ON|0|1}(?) — Removed.

e 4 Run Mode Commands — Minor corrections.

e Figure 4-1 Standard Trigger — New.

e 4.3 :TRIGger:SOURce:ENABIe{NONE|TRG1|TRG2|TRG3|
TRG4|TRG5|TRG6|INTernal |CPU|FBTRg|HWControl}(?) — Added
TRG3 -TRG6.

e 4.4 :TRIGger:SOURce:DISable{NONE|TRG1|TRG2|TRG3]|
TRG4|TRG5|TRG6|INTernal |CPU|FBTRg|HWControl}(?) — Added
TRG3 -TRG6.

e 4.5 :TRIGger[:ACTIVE]:SELect{TRG1|TRG2|TRG3|TRG4|
TRG5|TRG6|INTernal}(?) — Added TRG3 -TRG6.

e 4.7 :TRIGger:CPU:MODE{LOCAL|GLOBAL}(?) — New.

e Figure 4-2 Gate Trigger — New.

e 4.9 :TRIGger:LEVel<level>(?) — Updated description.

e Figure 4-3 Trigger Width — New.

e 4.15 :TRIGger:MODE{EVENtually|IMMediate}(?) — Updated
description.

e Figure 4-4 Trigger Holdoff — New.

e 5.4 [:SOURcel:INTerpolation{ NONE | X2 | X4|X8}(?) — Updated.

e 5.10[:SOURce]:FREQuency[:RASTer]{<sclk>| MINimum |
MAXimum}(?) — Updated.

e 6 Marker Output Commands — Added text “Marker data is
transferred ...”.

e 79
:TASK:COMPoser[:DEFine]:ENABIe{NONE |[TRG1 | TRG2 | TRG3|TRG4|T
RG5|TRG6|INTernal |CPU|FBTRg|
ANY}(?) — Added TRG3 -TRG6.

e 7.10 :TASK:COMPoser[:DEFine]:ABORt{
NONE|TRG1|TRG2|TRG3|TRG4|TRG5|TRG6|
INTernal | CPU|FBTRg|ANY }(?) — Added TRG3 -TRG6.

e 7.17 :TASK:COMPoser[:DEFine]:DTRigger{OFF|ON|0|1}(?) — Updated
description.

e 7.22 :TASK:DATA [<offset>]#<header><binary block> — Updated
description.

e 7.21 :TASK: SYNC — New.

e 9 Arbitrary Waveform Commands —

e Arbitrary Memory Management — New text about banks.

e Short and Fast Segments — New text.

Confidential | 3

@maon ELECTRONICS Proteus Programming Manual Rev. 1.4
9.1 :TRACe[:DATA](?) [<offset>]#<header><binary block> — New text
“The optional offset parameter ...”
9.25 :TRACe:FRAG? — Updated description.
10.8 :DIGitizer:DDC:DECimation{ NONE | X1| X4 | X16}? — Added
command parameters.
10.18:DIGitizer:ACQuire:STATus? — Changed from
DIGitizer:ACQuire[:FRAMes]:STATus? to :DIGitizer:ACQuire:STATus?.
10.37 :DIGitizer:TRIGger:DELay[:EXTernal]<delay time>(?) — Changed
EXTernal to [EXTernal].
10.48 :DIGitizer:DATA:FORMat { <U16 | F32 | F64}(?) — New.
10.50 :DIGitizer:LOOPback:DELay< delay>(?) — New.
10.51 :DIGitizer:LOOPback: SYNC — New.
10.52 :DIGitizer:LOOPback:IQRotation< scale>,<phase>(?) — New.
10.53 :DIGitizer:LOOPback:OVERflow(?) — New.
11.1 Introduction — Updated.
Table 11-1 Possible Data Storage Configurations — Updated.
11.2 :DSP:STORe{ DIRect | DSP | FFTOut }(?) — Updated.
11.3 :DSP:IQDemod:SELect{ DBUG | 1Q4 | IQ5 | 1Q6 | IQ7 | 1Q8 | 1Q9
[1Q10|1Q11 | 1Q12 | 1Q13 }(?) — Updated.
11.11 :DSP:FFT:INPut{ 1Q1 | 1Q2 |DBUG }(?) — Updated.
11.12 :DSP:MATH:OPERation{ MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3
[MI4 [MQ4 | MI5 [MQ5 | MI6 [MQ6 | MI7 | MQ7 | MI8|MQS |
MI9 |MQ9 | MI10 |MQ10 ,<SCALe>,<OFFSet> }(?) — Updated.
11.16 :DSP:MATH:RAVG { MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3
[MI4 |[MQ4 | MIS [MQ5 | MI6 [MQ6 | MI7 | MQ7 | MI8|MQS8 |
MI9 [MQ9 | MI10 |MQ10 |XC,<N> }(?) — Updated
11.17 :DSP:DECision[:FEEDback]:MAPping{ <awg channel
number>,DEC1 | DEC2| DEC3 | DEC4 | DECS | DEC6 | DEC7 | DECS8 |
DEC9 | DEC10 | XC}(?) — Updated.
11.20 :DSP:DECision:|QPath:SELect { DSP1 | DSP2 | DSP3 | DSP4|
DSP5| DSP6| DSP7| DSP8| DSP9| DSP10 }(?) — Updated.
12.13 :SYSTem:INFormation:PARSer:VERSion? — Removed.
13 Appendix Proteus SCPI MATLAB Script Examples — New examples.
1.2 15-Dec- 10.7 :DIGitizer:DDC:MODE{REAL | COMPlex}(?) — New DDC Jonathan
2021 commands sub-group 10.7 to 10.12 Netzer
10.19 :DIGitizer:ACQuire:AVERage:STATe{ OFF | ON |0 |1 }(?) - New
10.20 :DIGitizer:ACQuire:AVERage:COUNt<# frames to average> —
New
11 Digital Signal Processing Commands — New command group
1.1 26-May- Changed from ‘[<offset>,]#<binary header><binary-block>’ to Jakob
2021 ‘[<offset>]#<binary header><binary-block>’ Apelblat
Table 1-2 SCPI Syntax and Styles — New.
7.22 :TASK:DATA [<offset>]#<header><binary block>— Added
binary-block description.
10.5 :DIGitizer:CHANnel:RANGe{ HIGH | MEDium | LOW}(?) — Changed
MAX to HIGH and MIN to LOW.
10.36 :DIGitizer:TRIGger:HOLDoff< holdoff time>(?) — Changed
range to 0 to 16382 and removed TBD
13 Appendix Proteus SCPI MATLAB Script — New.
1.0 15-Mar- Original external release supporting WDS 1.4.740, SCPI Rev. 1.100, Jonathan
2021 FPGA version 1.116.0(rc) or later. Netzer

Confidential | 4

@TABOR ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Joan
Mercade
Jakob
Apelblat

Confidential | 5

@TABOR ELECTRONICS Proteus Programming Manual Rev. 1.4

Acronyms & Abbreviations

Acronym 'Description

Us or us Microseconds

ADC Analog to Digital Converter

AM Amplitude Modulation

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

AWG Arbitrary Waveform Generator

AWT Arbitrary Waveform Transceiver

BNC Bayonet Neill-Concelm (coax connector)

BW Bandwidth

Cw Carrier Wave

DAC Digital to Analog Converter

dBc dB/carrier. The power ratio of a signal to a carrier signal, expressed in
decibels

dBm Decibel-Milliwatts. E.g., 0 dBm equals 1.0 mW.

DDC Digital Down-Converter

DDS Direct Digital Synthesis

DHCP Dynamic Host Configuration Protocol

DSO Digital Storage Oscilloscope

DUC Digital Up-Converter

ENoB Effective Number of Bits

ESD Electrostatic Discharge

EVM Error Vector Magnitude

FBTRg FeedBack Trigger (from the digitizer)

FIR Finite Impulse Response (filter)

FPGA Field-Programmable Gate Arrays

GHz Gigahertz

GPIB General Purpose Interface Bus

GS/s Giga Samples per Second

GUI Graphical User Interface

HDMI High-Definition Multimedia Interface

HP Horizontal Pitch (PXle module horizontal width, 1 HP = 5.08mm)

Hz Hertz

IF Intermediate Frequency

I/O Input / Output

IP Internet Protocol

1Q In-phase Quadrature

VI Interchangeable Virtual Instrument

JSON JavaScript Object Notation

kHz Kilohertz

LCD Liquid Crystal Display

LO Local Oscillator

MAC Media Access Control (address)

MDR Mini D Ribbon (connector)

Confidential | 6

@TABOR ELECTRONICS Proteus Programming Manual Rev. 1.4

Acronym Description

MHz Megahertz

ms Milliseconds

NCO Numerically Controlled Oscillator

ns Nanoseconds

PC Personal Computer

PCAP Projected Capacitive Touch Panel
PCB Printed Circuit Board

PCI Peripheral Component Interconnect
PRBS Pseudorandom Binary Sequence
PRI Pulse Repetition Interval

PXI PClI eXtension for Instrumentation
PXle PClI Express eXtension for Instrumentation
QcC Quantum Computing

Qubits Quantum bits

RADAR Radio Detection And Ranging

R&D Research & Development

RF Radio Frequency

RMS Root Mean Square

RT-DSO Real-Time Digital Oscilloscope

s Seconds

SA Spectrum Analyzer

SCPI Standard Commands for Programmable Instruments
SFDR Spurious Free Dynamic Range

SFP Small Form-Factor Pluggable

SFP Software Front Panel

SMA Subminiature version A connector
SMP Subminiature Push-on connector
SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TFT Thin Film Transistor

T&M Test and Measurement

TPS Test Program Sets

UART Universal Asynchronous Receiver-Transmitter
usB Universal Serial Bus

VCP Virtual COM Port

Vdc Volts, Direct Current

VISA Virtual Instrument Software Architecture
V p-p Volts, Peak-to-Peak

VSA Vector Signal Analyzer

VSG Vector Signal Generator

WDS Wave Design Studio

Confidential | 7

@msan ELECTRONICS Proteus Programming Manual Rev.1.4

Contents
Document ReVISION HiStOrY.......ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiissiinssiessissssinssnnss 3
Acronyms & ABDreviationscccciiiiiiiiiiiiiiiiiiiiiiinissnes 6
L0001 =T 4 Y 8
FIBUIES «.eeeeeiiiiiiiiiieniiiiiitteneesissesittensssssssssstsennssssssssssassnnssssssssssssnnnsssssssssssnnssssssssssasnnnsssssssssssnnnnssssssssssnnnnns 15
LI L+ 1 =T 17
1 104 0T [Tt 4 o TS UTRU RS 18
1.1 oY eTo IV Totd o] oI5 o 3] = IS RURR 18
1.2 [0e] 001 aaF- o 1o I ST {1 F- | AF PP UPURURRRROE 18
1.3 (0eT00Y =10 T BNT=YoF-] =1 o | USSP 19
14 MIN @Nd MAX ParameLers ..cccciciiiiieiee ittt ettt e e e e e st e e e e e e s eaeta e e e e e e sesastaeeeeessesansraneeeens 19
1.5 QUErYING Parameter SEEHINGuuuuuuueiiiiiiiiiiiiiiiiiii bbb ababebababebabebababababararees 19
1.6 O NT=T VA 2 =T o Lo T g LTI o] g o F- | FS SO PON 19
1.7 SCPI CoMMAN TEIMINGATON ...viiiieiiieiiieeeee ettt e e e et e e e e e e e eetareeeeeeeseetasaeeeeeesesasnsaeeeeeeeeasnnrnes 19
1.8 IEEE-STD-488.2 Common Commands and QUEIIESeeeeeeieciureeeeeeeieeiirreeeeeeeeecnrreeeeeeeesearneeeeeees 19
1.9 SCPI Parameter TYPE..ccii ittt st e e s st e s 20
1.9.1 N0 L T=Y Aol o= T =T 0 4 =] =] PSP ORORPPEN 20
1.9.2 Do g =l T - 1 1= = SO ORORPPEN 21
1.9.3 BOOIEAN PAramELErSueeceiiiieciiee ettt ettt et e e et e e e tte e e e ta e e e et a e e s ntae e e s abeeeentee e e nnaeas 21
1.9.4 BiNary BlOCK ParameEters........cocuieiiiiiieceiiee ettt e et e e et e e e aae e e s bb e e e eatee e ennaeas 21
1.10 Queries for Commands with NUMeric Parameterscocueeeiieeieciirieee e e 21
1.10.1 RANGE?..ceeeeie ettt ettt e e e e e ettt e e e e e e e e abeeeeeeeeesaabaeaeeeeeesantaaaeaeesesasrasreeeeeesannnrens 21
1.10.2 IVIIN 2 ettt ettt e e e e e et a e e e e e e e e e e taabaeeeeeeeessaabaaeeeeeeaaantaaeeaeeeesasrasreeeeeesannnnrans 22
1.10.3 VLA 2 ettt ettt e e e e ettt e et e e e e e s e tbar e e e e e e e e e taabbeeeeeeeeaaaraaaeaeeeaaanbaaaeaeeeeaaararreaeeeeaannnnraes 22
1.10.4] o =T o USRI 22
00 I @ IV o = DT o B] =TSR PPUUNt 22
1.12 Proteus SCPI COMMANGSuuiiiiiiiiiiiiiieee e cecitrt e e e e e e setee e e e e e e seabbrreeeeeesesarareeeeeesessssssneeeessennssrens 24
2 SCPI Commands LiSt SUMMACY ...ccccceiiiiiiiiiiimiiimiieiieieiiiieieieeeeeemmeeemmeseemmesssssmssssssssssssssssssssssssssss 25
2.1 INSErUMENT COMMANGS ...eeiiiieiiiee e e e e e eeaee e e st e e e s te e e eenneeeesnaeeeesnsaeeeensseeesnnseens 25
2.2 (UL 1V, oT [N @0 Yo 0 ' F= o T -3 PSR 27
2.3 Analog Output CoNtrol COMMEANGAS ...ccuuiiiieiiie ettt eetee e sree e ree e e eeee e e s e e e e snteeessnraeeesnnaeeaens 30
2.4 Marker OULPUL COMMANGS ...ttt ee st e e e e e s ere e e e e e seeaataeeeeeesesastaeeaeeeeesnnsraneeeens 33
2.5 TASK COMMANAS .ttt e e e e st e e e e e e se bt taeeeeesseasataeeeeeeseassstsasaaessensstanneeeenannns 35
2.6 SCENAIIO COMMANGS .oeiiiiiiiiiiiiiee ettt e e e et e e e e e e setbbr e e e e e eesesbrtreeeeeesasssstaaeeeeesasssssnnsesessansssens 38
2.7 Arbitrary Waveform COmMMAaNdScccuiieieiiieiiiieeeecieeeeeiee e setaeeeesireeeeesaeessbaeeeesataeeesassesessseaeans 39
2.8 Digitizer GroUP COMMANGSuvieieiiieeeeiieeeeettee e stteeeesateeesstaeeesaaeeeessteeeseseeeesssseeeesnsaeasasseeesnssees 42
2.9 (DR 2 @o ' 4 =12 o 3PS 48
b 0 I V7 =T o ol 0] 3 Y0 - Lo £y PSS 52
0 B R @1 o] I =3 o] ol I SRR 53
3 Instrument COMMANCS......cciieeeeeeieiiiiiieeieerccee e reeeeeeseeesreeennsssseseseeeennnsssssssseeennnssssssssesennnnnsnnns 54
3.1 ANSTrUmMeNt:ACTIVE[:SELECE]{L...1(?) ceeeeieee ettt et e et e e e 54
3.2 (ANSTrument:CHANNEI[:SELECEI{L | 2] ..22H(?) cureeeeiiee ettt et e e 54
33 AINSTrument:CHANNELOFFSE{1|2]..1024H(?) ueecreecree e eireecteeeree st e ereeeteeeree e e e reeetaeesnne e 55
3.4 (INSTrument:COUPIE:SKEWSCh_SKEW>(?) c..eeeiieiiiiee ettt nee e e 55
3.5 IXINSTEUMENTIMODE(?) uvveeeiee ittt eeeerr et e e e e st b e e e e e e seebabaeeeeeesesastaereeeeeessnnrrareeeees 55
3.6 XINSTrument:SYNCHroniZeROLE(?) coeeeeeiiieeeiee ettt ettt e e e arae e e e e e s eeanbaeeeeeeeeeanraneeeeees 56

Confidential | 8

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

3.7
3.8
3.9

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

:XINStrument:SYNChronize:FOLLowers <number_of_follower_instruments>(?)cccceecuueee. 56
:XINStrument:SYNChronize:OFFSet < inst_offSet>(?) ..cccvvveveeiiiieiie e 57
:XINStrument:SYNChronize:SKEW< iNSt_SKEW>(?) .occveviiiiiiieiieeciee st ciee st st 57
RUN Mode COMMANdSccciiiiiiiiiiiiiniiniiiiiiiiiiiiiiiiiiiiiississssisissssississsssssssssssssssssssssssssssssssssssnens 59
:INITiate:CONTINUOUS[:STATEJ{OFF |ON [O] 1H?) voveveerrerrieriereeseeseeesteeteete e stee e e esee e sns 59
:TRIGger:COUPIE[:STATEJ{OFF [ON [O] 1H?) teoveecrereerreerierierieseeseeseeesteeseeesseseseseeeseeeseeesesssesseesnns 60
‘TRIGger:SOURce:ENABIe{NONE | TRG1| TRG2 | TRG3| TRG4|TRG5 | TRG6 | INTernal

[CPU | FBTRE | HWCONTIOIH?) ettt sttt ettt ettt st st sttt sbe e b e b s 61
‘TRIGger:SOURce:DISable{NONE | TRG1|TRG2|TRG3| TRG4|TRG5|TRG6|INTernal

[CPU | FBTRE | HWCONTIOIH?) ceeetteniieieeie ettt ettt ettt st st sttt et sbe e b nbean 63
:TRIGger[:ACTIVE]:SELect{TRG1|TRG2 | TRG3 |TRG4| TRG5|TRG6E|INTernal}(?)cccccvrvrrrvrrrurenee. 65
TRIGEEr[:ACTIVE]:STATE{OFF |ON O] 1) eeoveeeereerreerierieseeseeseeseeesseeeeessesssesseesseesseessesssessessens 66
:TRIGEEr:CPU:MODE{LOCAL| GLOBALY(?) cvtevrereerreerreeieriesteseeseeseeesseeseessesssesseesseessesssesssessessnes 67
TRIGEEr:GATE[:STATEJ{OFF |ON | L] 0}(?).eoveereeiereerieeieeieseeseeseeseee e eteenee e reeseeeseeesseenaesreesns 67
TTRIGEEILEVEIKIEVEIS(?) 1ttt ettt s e e e st e e e te e sabeeebeesntaesaeeebaaesneenns 68
TTRIGEEI:COUNTLCYCIESS () 1eeveiiiieieitteie ettt ettt ettt st st sae et ettt saeesbe e beenbeenbesatesaeesas 69
TTRIGEENWIDTRKWIATNS(?) 1ottt s e et e st esve e s beeeaeesbaeensneenns 69
:TRIGger:SLOPe {POSItive | NEGAtIVEH?) ..veeeeieeeeiiiee ettt ettt e et e e et e e et e e e aneeas 70
TTRIGEEITIMEISKTIMES(?) uviieiiiiee i ciiee ettt e et e e et e e e tae e e st e e e e tte e e eeastaeessbaeeessbaeeeenssaeesnseeas 71
BN L T A AV F=To 1T | S UURR 71
:TRIGger:MODE{EVENtUally | IMMEIAtE}(?) c.vveeeireeeeeeiieieeeitee ettt et etvee e et e e e 71
TRIGEET:LTI[:STATEJ{OFF |ON | O] LH2) wevveereeeeeeeseeeeeeeeeeeeeeeseeeeesesseseesesseees e seesesseeeesesseseesessses 72
“TRIGger:IDLE:[TYPE]{ DC | FIRSt | CURRENT }?) cvuvveereeeeeeereeeeeeseeeeeseeeeeeseseseeseeseeeesesseseenssesees 72
TTRIGEEN:IDLE:LEVEIKIEBVEIS(2) .oeeceiiecieeceee sttt ettt st e st e s be e s ve e s baeeaeesnbaeenneenes 73
“TRIGEEr:PULSE[:STATEJ{ OFF |ON [O] 1H?) wvrevveeeeeeeeeereeeeeeseeeeeeeseeeeeseeseeees e seesesseseesesseseeneseesees 73
‘TRIGEEr:PULSE:COUNEL COUNTS(?) 1riiiieiiiiieiiiiee e ciiee e ettt e e tte e e sttt e e e tr e e eetae e e sabaeeesabaeeeenaaeesnnneeas 74
TTRIGEEIPULSEICOUNTIRESEL ..ccuveiivieeieesitiesieesieeetee st e sreesbe e sbeessbeesbeesabeesbeesabaesseesabaesseesnns 74
B L CT= =T B Yo 1= = 1Y (0 PRSP 74
:TRIGEEr:HOLDOF holdOTf>(?) cuurieiiieciie sttt sttt e et e e ae e s ba e e aneeaes 75
Analog Output Control COmMMaNdS........eeeeeeeeeeeeeemeeeneeeeemmmmsssmmsssnns 77
(OUTPUL[:STATEJ{ OFF | ON | O | 1 H?) ceerereeeirieiireeeiieesreeeiteesteeereesteeeveesteeesaesraeeneesnraesneennns 77
[:SOURCe]:MODE{ DIRECt |NCO | DUC H?).eeoverueerreerieeieeierieseestesieesieeeeeseesneesteenseessesnsesnsesneeses 77
[:SOURce]:PTRepeat{ X1 | X2 | X4 | X8 H?) ceerreeiireeeeiiieeeeitee ettt e et e et e e eettee e e eata e e e et e e e 78
[:SOURce]:INTerpolation{ NONE | X2 | X4 | X8} ?) ..ccueeeeeirrieeeiiee e etie e ettt et e e eettee e e evve e e e 79
[:SOURCE]:NCO:MODE{ SINGIE | DUAL?) c.eveeereerrierieesiiesireesieseireesreesseesteessveessaesssessssesensessnne 79
[:SOURce]:NCO:CFRequency<1|2> <Carr_freq>(?) o cciee e cteeeeree et etee et e eereeeveeeenee s 79
[:SOURce]: NCO:PHASe<1|2> {<phase in degrees>}(?)....ccccveiveeeieeiiieeeieesieeeireessieeeeveesveeesvee s 80
[:SOURCe]:NCO:SIXDb<1 | 2>{ OFF|ON O [1H?) ceeereerreereeieriereereenieesieeeeereseesseenieeseensessesneesens 80
[:SOURce]:IQModulation {NONE |HALF|ONE | TWOX(?) .veeerreerireeeiieeiieeeireeeteeesveessveeesveesvaeenseeenns 81
[:SOURce]:FREQuency[:RASTer]{<sclk>| MINimum | MAXimum}?)ccceeveeiiiirireeciieeeecieee e, 86
[:SOURce]:FREQuency:SOURce{ INTernal | EXTernal}(?)....ccooeeeeieeeeciiie et et 87
[:SOURce]:FREQuency:OUTPUt[:STATE]{OFF|ON|O| 1} (?) ceoereeiiieeeeiiee et e 88
[:SOURce]:FUNCtion:MODE[:TYPE] {ARBitrary | TASK}(?) ..cccoueeeeiiieeeeiiee et e 88
[:SOURce]:FUNCtion:MODE:SEGMent <segment_nuUmber>(?)cccccccvvereccereiiieeeesiee e 89
[:SOURce]:FUNCtion:MODE:TASK< task_nuUmber>(?)cccccovviviiieieiiee e ceee e e 89
[:SOURce]:ROSCillator:SOURcef{ INTernal |[EXTernal}(?)...ccccoeeveeeveeiirieecee et 90
[:SOURce]: ROSCillator:FREQUeNCcY{ 10M | 100IM}(?) ..eeecveeeireeiireeeireesieeereesreeesseesveeesreesvaeenseeenns 90
[:SOURce]:VOLTage[:AMPLitude] {<amplitude> | MINimum | MAXIimum}(?)cccccevvreeeeevrerenreeens 91
:SOURce]:VOLTage:OFFSet{<offset> | MINimum | MAXimUM}?)cccvrreeiiiieeiiiiee e 91
Marker Output COMMANGS.......ccuuuiiiiiiieiieeiieerrieenneeeeeereeeennssseeereeeennnssssssssessnnnsssssssseesnnnnssnnns 93

Confidential | 9

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

7.10

7.11
7.12

7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28

8.1
8.2
8.3

IMARKEFSELECI{L | 23]43(2) cooreeeeiitiie ettt ettt ettt ettt e e e et e e e et e e e eatae e e e aba e e e enaeeeeeaneeas 94
MARKEr[:STATEJ{OFF [ON O] LH2) cvuvevrevreeeeeeeeeeseeeeeeeeeeseeseseeeeeseeseseesessesees e sees s eeesesseseenessasens 94
:MARKer:DELay:COARSE KACIAY>(?) ..ueiccreeiiieeiieiieeeieesteeetee st e eteesteeeteesbeeeaeesteeeaeesnbaaeseeenns 95
IMARKEr:DELAY:FINEKAEIAYS(?) ceeiiuviieeeiiiieeeieee e ctee ettt e s tte e et e e e str e e e e nare e s s naaeeesntaeeeennnaeesnnnneas 95
:MARKEr:VOLTAge:LEVEl KEAIN>(?) uveeieiiiii e citeeeetee ettt e e sree e et e e e ere e s s ntae e e sata e e e enneeesanneeas 96
:MARKer:VOLTage:PTOP<PLOP_IEVEIS(?) . .iicceiee ettt ettt e tee e et e e e e 96
IMARKeEr:VOLTage:OFFSEt<OffSEI>(?) . iiiuiiiiiieiie e ettt sttt e e e et e e aeesbaeeaee e 97
:MARKer:DATA [<offset>]#<header><binary_blOCK>(?)ccceveieieiiiiieiie e 97
:MARKer:MEMory <offset_in_bytes>,#<header><marker-data>(?).......cccceevvvevieeriirevieesineeneennns 98
:MARKer:FILE[:NAMe]{<#t<header><binary_block>}cccccceriiiiiiiiiiice e 99
:MARKer:FILE:OFFSet< start-offset inside the file>(?)ccoocveeiviiiee e, 99
:MARKer:FILE:DESTination < SEGMent | MEMOIY>(?) cocvvieiieiiieeeieecieeeree e eree et eereesveeeenee s 99
:MARKEF:FILE:LOAD [[KOffSEE>,]KSIZES] uuvrrriiiiiiiieiiiiieei ettt e seabrae e 100
:MARKEF:FILE:STORE [[KOffSET>,]<SIZES] uuvrriiiiiiiiiiiiiieiie ettt e 100
LI T 100 T 4T 4 - o o £ 102
:TASK:COMPOSEr:LENGEN<IENGN>(?) covviiiiieeiee ettt st 102
"TASK:COMPOSEI:SELECEKTASK_H#>(?) .veeeureeiiieeieeiieeeie e st eete e ste e e e e steeste e sateeeaaeesateesnseesareennneens 102
:TASK:COMPoser[:DEFine]:TYPE{SINGIe | STARt|END| SEQ}?)..ccecceerrrrerireerreenireerieesreesveenneens 102
:TASK:COMPoser[:DEFine]:LOOPS<task_00PS>(?) .ccvveeivreeeireeiieeereeireeere e sreeereesre e sveeearee e 103
:TASK:COMPoser[:DEFine]:SEQUeNCce<Seq_I00PS>(?) wuvrieiiiieeeiieeeiireeeecieeeeeieee e stvee e iae e e 104
:TASK:COMPoser[:DEFine]:SEGMeNt<segment>(?) ...cccceeecciieeeeiiee e ciree et eeeire e eree e e 104
:TASK:COMPoser[:DEFine]:IDLE[:TYPE] {DC | FIRSt| CURRENH?) c..veverereeererereereeeeeeeeeeeeeeeeeees 104
“TASK:COMPoser[:DEFine]:IDLE:LEVEl {<DC_IEVEISH?) . veveiveeeeeeeeeeeeeeeeeeeeeeeseeeeee e 105

:TASK:COMPoser[:DEFine]:ENABIe{NONE | TRG1| TRG2 | TRG3| TRG4 | TRG5 | TRG6 | INTernal | CPU

[FBTRE| ANYHP) evereeeeeeeeeeeeeeeeeeseeeseseeseseesesoeseseeesessseesessasessesesseesesseeeseeseeesessees s eseeeseesessesesesseesens 105
:TASK:COMPoser[:DEFine]:ABORt{ NONE|TRG1|TRG2|TRG3|TRG4|TRG5|TRG6 |

INTEPNAI | CPU | FBTRE [ANY H{?) wrveveeeeeeeseeeeeeseeseeesseseeesesessesessesssessssesessesessssessesssesssesssessseseasessens 107
:TASK:COMPoser[:DEFine]:JUMP{EVENtually| IMMediate}(?).....cccccvvervreerireerreesieeeieesiee e 109

:TASK:COMPoser[:DEFine]:DESTination{NEXT | FBTRg | TRG | NTSel | SCENario | DSP |DSIG}(?)
110

:TASK:COMPoser[:DEFINe]:NEXTL <NeXt_task>(?)cccvveeeeereereeireereereeeeereeneereneseeereeveeveereennenns 110
:TASK:COMPoser[:DEFine]:NEXT2 <next_task>(?) ..cccoeiveeeieeiiieeeiee ettt 111
:TASK:COMPoser[:DEFine]:DELay<task_delay>(?) ...ccccccoeeeiiiiiiieeiee et 111
:TASK:COMPoser[:DEFine]:KEEP{OFF [ON O] 1H?) ueeeerereeeiieeeeiiee ettt et 112
:TASK:COMPoser[:DEFine]:DTRigger{OFF |ON | O] 1}?) ceeeeeeireeeiiee e eiee ettt e 112
:TASK:COMPoser:WRITE<offset in task table rows>.........ccccevevieiiiiieeeee e 112
:TASK:COMPoser:READ<offset in task table rowWS>.........ccccveiieiieiiiiiieecre e 113
B 17N S O (=T 4SS 113
TTASK: SYNC .ttt ettt e e e e tte e e e e te e e e etbeeeseabeeeeastaeeeassaaeessseeeaastaeesansaseesasseeeasseeeenseeas 113
:TASK:DATA [<offset>]#<header><binary_block>.........cccccoiiiiiiiiiiiiec e, 113
:TASK:FILE[:NAME] {#<header><binary BlOCK>}......cccccoiiieiiiiiiieeiec e 115
STASK:FILE:OFFSet <Start-0ffSet> ...ooiiiiiiiiieie e 116
:TASK:FILE:LOAD[<offset>,<num_of_tasks>]ccccevivciiriiiieeee e 116
:TASK:FILE:STORe[<offset>,<num_of _tasks>].....cccciviiiiiiiiieceiee e 116
:TASK:ZERO[:PORTion] <offset>,<num_of_tasks>cccccciiiieiii i, 117
B 170 7 =12 (@ 1 IS 117
SCENArI0 COMMANAS ...cccciiiiiiiiiiiiiiiiiiieetetetteteeeeeteeeeseessesssesssnssssnnnns 118
:SCENario:DEFine { <scenario-number>, <task-number>, <Ioops>}?) ...cccceeeecireeiciieeeciiee e, 118
:SCENario:DATA {[<offset>,J#t<header><binary_block>}cccoiiiiiiiii e, 118
:SCENario:FILE[:NAME]{ #<header><binary_block>}cccovireiiiiiiie e, 119

Confidential | 10

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

10

8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18

:SCENAriO:FILE:OFFSEt {SOffSEIS} . uuiiiiiiiie et et ettt e 119
:SCENario:FILE:LOAD {[<offset>,<num_of_scenarios>]}cccceeveririiiiinniiieiiee e, 120
:SCENario:FILE:STORe {[<offset>,<num_of_SCenarios>]}......cccccceeveiriierieeiiiiesieesieesieesveeenen 120
:SCENario:ZERO[:SINGLE] <SCENAMIO-NUMDEI>.......cvviiiiiiiiieiiriieiee et sebraee e 120
ISCENQIIOIZERO:IALL ..eoviviiiiee ettt ettt ettt si et sabeesabe e sabeesateesabeesabeesabaesabeesabeesaseens 121
Arbitrary Waveform Commands...........eeeeeeeeeeeeeeeeeeeeeeeeeeeeessnns 122
:TRACe[:DATA](?) [<offset>]#<header><binary_block>........ccccceeiiiiiiiiiieiiiecee e 123
TRACE:FORMAL] SULE | UBSH?) cvrveeeeeeeeeeeeeeeeeeeee st ees e ees s es s enes s eneeees 125
:TRACe:MEMory(?)< offset_in_wave-points>#<header><wave-data>cccccccvevveeienreenreennen. 126
:TRACe:SEGMents[:DATA] [<first segment number>,]#<header><binary_block>...................... 126
:TRACe:SEGMents:FILE[:NAMe] #<header><binary_block>cocveeiiiiiiciiii e, 127
:TRACe:SEGMents:FILE:OFFSet <offset in bytes>(?) ..ccveeeeiiieiciiee e 127
:TRACe:SEGMents:FILE:LOAD[[<first segment number>,],<number of segments>]................... 128
:TRACe:FILE[:NAME]#<header><binary_block>........cccccouvieiiiiiieeiec e 128
:TRACe:FILE:OFFSet< offset in BYTES>(?) .iiiiiiciieiieeeiee sttt st eee e 128
:TRACe:FILE:DESTination{SEGMent | MEMOIYH?) .cccoeeioieeeiie ettt et 129
:TRACe:FILE:LOAD[<offset>,<size in WaVe-pPOiNtS>]c.ciiiriiiiiriiee e 129
TRACE:FILE:STORE[KOFfSEES,KSIZES] oottt et sab e e 129
:TRACe:STReaming:MODE {FILE|DYNAMICH?) cveerverrrueerieinieerieenieesieesreesreesseesireesaeesnveesaneess 130
:TRACe:STReaming:STATE{OFF|ON | O] 1H?) vevvveerreerreeiieinieeiieesreesreesreesreesireesreessreessveesanee s 130
:TRACe:DEFine[:SIMPle] [<seg_number>,]<seg_length>(?)......cccccoiirieiiiiiicciie e, 131
TTRACE:DEFINEILENGLIN? ..o e e e et e e e e e e st ae e e e e e e e e nnrnaeeeees 131
:TRACe:ZERO[:SEGMent] [<SegmMeNnt NUMDBEI>].....cccoiiiiieeieiiieecte ettt 131
TTRACEIZERO:ALL. ettt ettt e e e e e e et ta s e e e e e e e taa e e e e eeeeataaaaeeeeeeeasasanseeeeennsnnnnnaees 132
:TRACe:DELete[:SEGMENt] <SEZ-NUMDEIS>....cc.uiiiiieciiecieceie sttt st re e sreeearee s 132
:TRACE:DELEtE[:SEGIMENTIIALL cvvviiiiieiiieiiieeeie sttt ste st ste e site e siteesiae e s e e saneesabeesaaeesateesnnee s 132
:TRACe:SELect[:SEGMeNt] <S€Z_NUMDEI>(?)..ccccciiiiiiieeeciee e et 132
:TRACe:SELect:SOURce{ BUS | EXTernal | ADC | DCT H?) cecveervreeriieerieenieesieesieesieesiveesiveesineens 133
:TRACe:SELect:TIMing{ EVENTuUally [IMMEedIiate}(?) ..cecvreeerreeiieeeiee sttt eere et 133
TTRACEIFREE? ...ttt ettt st ettt ettt et esae e st e et e et e et e entesaeesaeesaeenseensesnseensesaeenseenseensenn 134
TTRACEIFRAG? ..ottt ettt st s e st e e bt et e st e sue et e e b e et e enteeatesatesaeesaeesseenseensesnsesaeenseenseensenn 134
TTRACEIDEFRAG .. et euteeteeteeteeteetestesttesaeesteeteentesatesue e st e abeesseensesnsesatesaeesaeesseensesnsesnsesseesseenseensens 135
Digitizer COMMANSccceiiiiiiiiiieriiiiiiiiinereri st ssss e e s ss s s sans s e s s s sssssssnnsssessssssssas 136
:DIGIitizer:[:SELECt]{ DIGL | DIG2}(?) c.vterereerreeriresieenieesieesreesreesseesseesseessseessseesnsesssseesssessnnens 136
:DIGitizer:MODE{DUAL [SINGIEH?)cuveerreeirienieeiieesieesteesireesteesteesreesaeesireesaseesireessseesssessaseens 137
:DIGitizer:CHANNEI[:SELECE]{ CHLICH2H?) ueereieerieiriieiieeniee sttt st sre e e e saeesreeseveesveesanee s 137
:DIGitizer:CHANnNel:STATe{ DISabled | ENABIEA}?) ..cceeivreerrieiieeeiee sttt et 138
:DIGitizer:CHANNnel:RANGe{ HIGH | MEDIUM |[LOWH?) ..cveeeieeiieeeree sttt sve et 138
:DIGitizer:CHANNel:OFFSet< offset_IeVEl >(?) ..iiiiiiciieiieeeii ettt st 138
:DIGitizer:DDC:MODE{REAL| COMPIEXH?) cuveerreerreirieeiieenieesieesieesreesseessreesseesssesssessseessseess 139
:DIGitizer:DDC:DECImation{ NONE | X1| X4 | X16}? ..ceicueerireerieenieeiieesieesreesseesreeseeeseveesanees 140
:DIGitizer:DDC:BIND{ OFF | ON [0 |1 H?) eveuerreeeeeereeeeeeeeeeeeeeseeeeeeesseeeseeesessessesseeeseseseesesnsene 140
:DIGitizer:DDC:CFRequency<1|2> <carr_freq>(?) ittt et e 141
:DIGitizer:DDC:PHASe<1 | 2> {<phase in degrees>}?)cocceiveeeiie ettt 141
:DIGitizer:DDC:CLKSOUrCE{ DIG | AWGH?)...veeereeireeereeireesreesteesteesreesareesaraesaseesasaesaressnsaesnneens 141
:DIGitizer:ACQuire[:FRAMes]:DEFine<num_of_frames><frame_length> (?)ccoovveevvvrernnenn. 142
:DIGIitizer:ACQUIre[:FRAMES]:FREE ..ottt e st e e e e e araaeeee s 143
:DIGitizer:ACQuire[:FRAMes]:CAPTure[:SELECT]<1st frame>,<num-frames> (?)cccvreeuneen. 143
:DIGitizer:ACQUIre:[FRAMES]:CAPTUFEIALL .ocovvvveeeieeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt ee e e e e e e e e eeeeeeeeeees 144
:DIGitizer:ACQuire[:FRAMes]:MARKer{OFF|ON|O | 1H?) ccoovereeeeieee et e 144
IDIGItIZEr ACQUITEISTATUS? oiiiiiiieete e e sttt e e e e serrrre e e e e s s e e rereeeeesesaabateeaessessssbaeeeaessessnrenneeeens 144

Confidential | 11

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

11

10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27

10.28
10.29
10.30
10.31
10.32
10.33
10.34
10.35
10.36
10.37
10.38
10.39
10.40
10.41
10.42
10.43
10.44
10.45
10.46
10.47
10.48
10.49
10.50
10.51
10.52
10.53
10.54
10.55

111
11.2
11.3

11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11

:DIGitizer:ACQuire:AVERage:STATE{ OFF | ON |0 |1 H?) cecveeeeeieeeeeee et 145
:DIGitizer:ACQuire:AVERage:COUNt<# frames t0 average>cccccevveerieeiieenieenieeneee e 146
:DIGitizer:ACQuire:ZERO[:SELect]<1st frame>,<num frames> <fill value>cccccevnnnnneen... 146
:DIGitizer:ACQUIire:ZERO:ALL <fill VAlUB>veivuiieiiiiiiierie ettt s 146
:DIGitizer:FREQuency[:RASTer]{<sclk>| MAXimum| MINIiMUum}?) ..ccoceeveerireenieeiieeeree e 147
:DIGitizer:FREQuency:SOURce{INTernal | EXTErnal}(?)....cccccveererreereeeieereeseerieeeeeeeseeseeeseeennens 147
:DIGitizert:INITiate[:STATEJ{OFF [ON | O] 1H(?) ceuvueieeeeeeeeeeeeeeeeeeeee e ere e enseeen 148
:DIGitizer:TRIGEEIr[:IMMEIAtE]vviiiiiiee ettt e e s abe e e saneeas 148
:DIGitizer:TRIGger:SOURce{ CPU|EXT|CH1|CH2| TASK1|TASK2| TASK3|TASK4 | MR1|MF1|MR2|
IVIF2(2) oottt e e s e et e e s e s e et s e e ee et s e e et e e r e eneeeeeraereeeens 149
:DIGitizer:TRIGger:LEVel<1 | 2>{<trigger_1evel>}(?) ..ot 149
:DIGitizer:TRIGger:SELF[:LEVel]<trigger_leVel>(?) ...t 150
:DIGitizer:TRIGger:TYPE{ EDGE | GATE | WEDGe | WGATe | CUSTOM }?) vevvevrvecrrerereeeiennnns 150
:DIGitizer:TRIGger:CONDition{ GREater | SHORLEI}H?) ..cccvveeireeiieeeiee ettt sre e s 151
:DIGitizer:TRIGEEr:SLOPE{ POS | NEG H?)..ooeereerreerrieiieesteesiee st e steesteeseteesaaeesteesaveesnreasnnee s 151
:DIGitizer:TRIGger:WINDow:STARt { <threshold-level index (1/2)>, POSitive | NEGative }(?) ...152
:DIGitizer:TRIGger:WINDow:STOP { <thrshold-level index (1/2)>, POSitive | NEGative }(?) 153
:DIGitizer:TRIGger:WIDTh<trigger_event_Width>(?)cccccciiiieiiiiiiiiiee e 153
:DIGitizer:TRIGger:HOLDoff< holdoff_time>(?) ..cceievuieeeeciiee e 154
:DIGitizer:TRIGger:DELay[:EXTernall<delay_time>(?)....cccccieeeecieeeciiee et 154
:DIGitizer:TRIGger:AWG:TDELay<task-trigger delay>(?) ..ccccccvieerieiiiiieniee e 155
:DIGitizer:PRETrigger< pre-trigger length in samples>(?)cccvevverieiiiinieniiecceeeeee e 155
:DIGitizer:DATA:TYPE< FRAMes | HEADErS | BOTH >(?).uiiccuieiiieeiieiieeeieesieeeiee e s 156
:DIGitizer:DATA:SELect < ALL | FRAMES | CHUNK>(?) couveeeiieiieeeiee st 156
:DIGitizer:DATA:FRAMes <1st-frame>,<nuUm-frames>(?) ..ccccocveeieeiiiieeee e 157
:DIGitizer:DATA:CHUNk <frame-no>,<offset in samples>,<read size in samples>(?)c....... 157
IDIGILIZEIIDATAIREAD(?) touteeiieeeieesteeste e st e st e siteesite e s teesaaeesateesaseesabeesaseessteessseesasesssseessseesnseens 158
IDIGILIZEIIDATAISIZE(?) reeeieeiieeeiee it et st ste e s e e st e s e e sate e sateesateesabeesaseesateesaseesabeessseesnseesnseens 158
:DIGitizer:DATA:FNAMe #<header><file-path as binary data>.......ccccceeveiiiiniiiniiinceeeee, 158
:DIGitizer:DATAISTORE <OffSEE> ...oiiiiiiieiieeetee ettt sttt s e e s 159
:DIGitizer:DATA:FORMat { SULE | F32 | FOAM?) cooveeeirieiieeeieeiieeeree st e ete e sereeeveesteesveesavaeennee s 159
:DIGitizer:LOOPbAck[:STATE]{ OFF |ON O] 1}?) veeeveeeereerieeieeieniesieseeseesieeieeeeeeeesaeeseeeseeeeees 160
:DIGitizer:LOOPback:DELAYS dEIAY>(?) uveeeeciiie ettt ettt e et 160
DIGItiZEer:LOOPDACK: SYNC ..ieiiiiieiiiesiee sttt sttt st re e sre e ste e s te e sate e s e e sabeesabeesaseesasaesaseess 160
:DIGitizer:LOOPback:IQRotation< scale>,<phase>(?).....ccccciieeeiiee e i e 161
:DIGitizer:LOOPDACK:OVERFIOW(?) «uvviiiiiieecciiie ettt e et eette e e ta e e e ate e e eanaeas 161
:DIGitizer:PULSe[:DEFine] {<INTernal | EXTernal>,<FIXed | GATed>,<window_width(?) 161
DIGItIZEIrIPULSEICOUNLE? ..ottt ettt ettt ettt st sat e st e st e sabeesaseesabeesaneesabeesaneens 162
Digital Signal Processing ComMmMaNndscccceeiiiiiiisnnneniiiiiisinnnnenniissnsseesiiissssseesssssnsenes 163
INEFOAUCTION DISP ...ttt ettt e e et e s et e e s bt e e s sab e e e sabaeessabbeeesnbeeesnnaeas 163
:DSP:STORE{ DIRECE | DSP | FETOUL H(?) cvrvevreeeeeeeeeeeeereeeeeseseeeeeseseeeesessesesessesssessessesesessseseseens 167

:DSP:IQDemod:SELect{ DBUG | 1Q4 | 105 | 1Q6 | 1Q7 | 1Q8 | 1Q9 | 1Q10 | 1Q11 | 1Q12 | 1Q13 }(?)
168

:DSP:1QDemod:KERnel:COEFficient <sample number>,<real>,<imaginary>(?)cccocceervveennnene 169
:DSP:IQDemod:KERnel:DATA#<header><binary_block>(?) .cccccvveiviieieeee e, 169
:DSP:FIR:SELect{ 11 | Q1 |12 | Q2 |DBUGI | DBUGQ}(?) +eeveerverrerrereereereeereeerseeeeeseseenseensesnsens 170
:DSP:FIR:BYPASS{OFF [ON [O] 1H?) ceuverrereerreerieeeeeieseesteesteesieesessesseesaeeseeesseensesnsesnsesseessesssesnses 170
EDSPFIRILENGEN(?) ettt et e eeee e eese e eeeseesee s sees e eesesaeeseeseesesesaseneesesenesesseseenesas 171
:DSP:FIR: COEFficient <tap number>,<the value of the specified tap>(?)cccooeeveriveeeciieeennen. 171
:DSP:FIR:DATA#t<header><binary bloCK>(?)....ccociiiioiiiiieieeeeee e e 171
:DSP:FFT:INPUL{ Q1 | 1Q2 [DBUG }(?) wereerreereeeereeeseenieesieesteeteesesseesneeseeesseesesnsesnsesseessesssesnsens 172

Confidential | 12

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

12

13

11.12

11.13
11.14
11.15

11.16

11.17

11.18

11.19
11.20

11.21
11.22
11.23
11.24
11.25
11.26
11.27

121
12.2

12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17
12.18
12.19
12.20
12.21
12.22
12.23

13.1
13.2

:DSP:MATH:OPERation{ MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3 |[MI4 |MQ4 | MI5 |[MQ5 | MI6

IMQ6 | MI7 | MQ7 | MI8|MQ8 | MI9 |MQ9 | MI10 |MQ10 ,<SCALe>,<OFFSet> }(?)............. 172
IDSP:MATH:OPERGLIONICLIP()eeeeeeueiie ettt eeieeeeeite ettt eette e eeate e e et e e eeatae e eeaaaeeeetreeeenaseeeeennneas 173
:DSP:MATH:XCORrelation:LENGENKN>(?) coccviiieeiie et 174
:DSP:MATH:XCORrelation:SIGNal{ <MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3 |MI4 |MQ4 | MI5
[MQ5 | MI6 [MQ6 | MI7 | MQ7 | MI8|MQ8 | MI9 [MQ9 | MI10 [MQ10 }?) .eooevvererereennne 174
:DSP:MATH:RAVG { MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3 [MI4 [MQ4 | MI5 |[MQ5 | MI6 |MQ6
| MI7 | MQ7 | MI|MQ8 | MI9 [MQ9 | MI10 [MQI0 |XC,<N> }(?) cevoverrereerreerrieneessieneniaes 175
:DSP:DECision[:FEEDback]:MAPping{ <awg channel number>,DEC1 | DEC2| DEC3 | DEC4 | DEC5
| DEC6 | DEC7 | DEC8 | DECO | DECL10 | XC}(?)errrereeereeeeseeseessessessessessessessessesssssssssssesssssessens 176
:DSP:DECision[:FEEDback]:CONDition{<awg-channel number>,S1 | S2 |S3 | S4 | S5 | S6 | S7 |
S8, <SEEMENT NUMBEIS}H?) .uiiii it e e e e e e s tre e e e ara e e ssasaaeesnreeeens 177
:DSP:DECision:FRAMe<the frame size for the calculation>(?)cccccovveinieiiiiiniieniieeee e 178
:DSP:DECision:IQPath:SELect { DSP1 | DSP2 | DSP3 | DSP4| DSP5| DSP6| DSP7| DSP8| DSP9|
DSPLO H(2)ervreeveeeeeeeeeeeeeeeseeeeeeeseeeeseeeeeeseeeee e e e s et e s e s et st en st et en st seen e et eneeeen 178
:DSP:DECision:IQPath:OUTPUL{ THR | SVM }(2) c.vreueeeerieeeeieseeeeeeeseeeesseeesseeeessees s eeseeneeees 179
:DSP:DECision:IQPath: THRESHOIA:LEVEI { KN> H?) e vveeerieeeeeseeeeeeeeeeeeseeteseesseeseeesesesseseenees 179
:DSP:DECision:IQPath:THReshold:INPUt { I | Q H?).ecoeveeeeeiiee ettt et e 179
:DSP:DECision:IQPath:LINE{ 1 | 2 | 3, <slope>, <y-intercept>}?)....cccverveeveereevreereeeeereesreenenn 180
:DSP:DECISION:IQPAtNICLIP(?) .vieeeeiiiie ettt e ettt ettt e et e et e eetre e e s etre e e e satae e eeasaee e sataeeeestaeesnneeas 180
:DSP:DECision:XCORrelation: THReShold { N> H?) couveiiiiiiieeiieeeee et 180
:DSP:DECiSion:XCORFElatioN:CLIP(?) ..eioueeeeeriieeeeee et eetee et et eeeeree e eeaeee e eareeeenaneeeennneeas 181
VA 0T 0 T 0o T 0 T 4 = T T L3N 182
:SYSTem:LOG[:VERBOSE] {0]1]2[3[4]5|6}2)-evevreeeeeereeeeeieseeeeeeeeeeesseeeeseseesesseeseneseseeneeeees 182
) AL 1 H = 203 To] o SRR 182
12.2.1 g oY g 11 USROS 182
:SYSTem:INFOrmation:CALIDIratioN?........uii et e eaaae e e st e e e e aaa e e eaneeas 184
:SYSTeM:INFOrmation:IMODEI?oviicieee ettt e e e ta e e e eata e e e s tae e e eatee e enaaeas 184
:SYSTeM:INFOrmMatioN:SERIAI?cccuiiii et e e e e e s e e e saae e e snnneas 184
:SYSTeM:INFOrmMatioN:HARDWAIE?uueeeeiiiieceiiee e etteeeesee e e eeee e s s stae e e e satee e seaaeeeesnsaeeesnneeesnnneas 184
:SYSTem:INFOrmation:FPGAIVERSION?....cciiiiiieiciie e cciee ettt eete e sttt e e e stee e seaae e e srae e e s nnae e e snneeas 185
:SYSTem:INFOrmatioN:FPGAIDATE?uviiieciiieeeiee e cttee e ettt e e see e e s tae e e e sate e e ssaaee e e snraeeesnteeesnnneas 185
:SYSTem:INFormation:FIRMWare:VERSION?cciiiiiiiee ettt e e e vvane e 185
SYSTem:INFOormation:FIRMWAre:DATE?ccccuiiiiiee ettt e e e e e eeirtre e e e e e s e naeraeeeeeeeenes 185
:SYSTEM:INFOrmMAtioN:DAC? ...t e e e e e e st e e e e s e e s aabaereeeeeesnntraaeaeans 186
SYSTEM:INFOrMaAtioN:SLOT? ...t et e e e e e st r e e e e e e e s st ae e e e e e eesnsrsaneaeens 186
SYSTem:INFOrmation:SCPI[:VERSION]?...cueiie e eeccreeeee et e e e e eanrre e e e e e eesaaraeeeeeeeenes 186
SYSTEM[:MEASUIE]:TEMPEIATUIE? ...cceiiireeee ettt eeerree e e e e e et ree e e e e e e satreeeeeeeesennrnaeeeeens 186
(SYSTEMIMEASUIE]THTPEAK?evvreeeie ettt ettt e e e e st re e e e e e e e s b e e e e e e eesnnrnaaeeeees 187
Y STEMIMEASUIE :LTPEAK? ettt e e e e st e e e e s e saabaaeeeeees 187
SYSTEMMEASUIE]VINTEINGIT vttt et e e e e st e e e e e e saabaaeeeeees 187
:SYSTEM[:MEASUIE:VAUXIIAIY? ...oveiicieee ettt e e e et e e e ata e e e et e e e eabe e e eaneeas 187
) R L= 1 T S 07 1 [- U UUUP 188
:SYSTem:FILE[:NAMe]{< #i<header><binary-block>}......cccccoviieiiiiiie e, 188
BN Y =T 0 L] 74 3 S 189
:SYSTEM:FILE:DATA[<offset>,[#<header><binary_block>(?) ...ccccceeviieeeeeiii e, 189
B Y I =11 o 1 T Y S 189
Appendix Proteus SCPI MATLAB Script EXamplesceeeeeeeeeeenneeennneeeeeemmensessmsssssssssssssssssssnes 190
[[aY oY [V Tot o] o U UUUR 190
Opening @ SEeSSION WIth Prot@US........uiiiiii ittt et e e e e e e e e aare e e e e e e e s aarenes 190
13.2.1 Programming EXamPIE 1oooeiiiiiiiie ettt ee et e et e e e e s n e e e ne e e ennes 191

Confidential | 13

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

13.3 Generating a Waveform in Multiple Channels........c.coooiiiiii i 196
13.3.1 Programming EXample 2cooiiiiiiiiieeeee e 199
13.4 Using the DUC Mode to Generate RF SigNals.........covuiiiieiiiieiieiiieiieesiee et s 210
13.4.1 Programming EXamPIE 3oiiioeiii ettt et e e et e e ra e e snaeaeans 217
13.5 Using the Digitizer to Capture Baseband and RF Signalscccceeeviiieieciii e, 249
13.5.1 Programming EXamMPIE 4ooioiiiei ettt e e e tre e e st e e et e e e eaaaa e e s rreaeens 251

Confidential | 14

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

Figures

UL O IR =Y Yo = o I 7= =] 60
U O T Y = I =73 68
Figure 4-3 Trigger Width ..uuiu i s s a e s e e e s e s e s a e e nenns 70
Figure 4-4 Trigger Holdoff .uuuiuii i s s s s s e s nans 75
Figure 5-1 1Q Modulation Modes BIoCk Diagramccveuieieiiuiiiriiienrniessnsenssnenssnsenssnssnensensenns 82
Figure 5-2 One-mode |Q Modulation Data FOrMatting vuu.eeuvereerenrenreerenresnrenrenresnrenressrenrenns 83
Figure 5-3 Two-mode IQ Modulation Data FOrmattingcccevviiiiiiiiiiiiiiicciseneseseseeeneneneens 84
Figure 5-4 DAC Clipping in IQM MoOGE.....uiiiiiiiiiiiiieieieienrnssenensnssssessssnsssasssassenssenessnssenenenens 84
Figure 5-5 DAC Clipping in IQM TWO MOGE ..vuivureenienrenrenrearssnrenrenrsasesessersnssnrersaserenn 85
Figure 5-6 Quantization of an IQ Waveform ... i eiiiiiir s e e e eaas 86
FIgUre 6-1 Marker FOMMAt cuuueuiieissneesesessessesesesaesns e seasasanensensensaesnsensenssnsnnensensenns 94
Figure 11-1 Proteus Digital Signal Processing Block Diagram.....c.cveveieiinveirnsnresrsrnrecsnsnsenennnns 164
Figure 11-2 Decision BlOCK IMOAUIE ..1vuiuriuviiiiiiiiririisin e ss s e sa s n e s s sasas e s e sansansnsensen 166
Figure 13-1 Waveforms Generated by Channel 1 — 4, Square, Triangular, Cosine, Sine............. 197
Figure 13-2 Channel 1, 2 with Channel 1 Marker Data (Blue, Red).....cvvvriiiirniriniirenrinennenrens 198
Figure 13-3 Channel 1 with Marker Data (Blue), Channel 2 with Marker Data (Red).........c..u.e. 199

Figure 13-4 Modulation Analysis of a 50MBaud QPSK Signal with a 1GHz Carrier Frequency 211

Figure 13-5 Top Window Shows the Baseband 1&Q Waveforms, Bottom Window Shows the Eye

Diagram for the | Waveform Using a Clock Signal Generated by a Another Channel 212
Figure 13-6 Red Waveform Shows a Digitally Modulated RF Signal While the Blue Waveform Shows
the ENVEIOPE SIZNal wuiuieiiiieiiei i re s s e s s e s e s e e e s e n e s e r e e rrr e r e nnns 213
Figure 13-7 1800MBaud QPSK signal is Generated at 2GHz Carrier Frequency in the HALF Mode
... 214
Figure 13-8 50MBaud QPSK signal is Generated at 500MHz, and a 100MBaud QAM16 signal is
Generated at 2GHz Using Both DUC blocks in the Same Channels........cccoveviiiiviiiieicnnenenennanes 215
Figure 13-9 500MHz QPSK Signal Analysed With @ VSAiieiiriiiiiee s e e e n e 216
Figure 13-10 16QAM 2GHz Signal Analysed With @an VSA....cccviiiiiiiiiiiiiniirie s e ea e 216

Figure 13-11 Radar pulse analysis of one of the acquired frames. The graph in the left shows the
demodulated (by the DDC) | and Q signals for the selected frame. The one in the center shows the
FFT of the complex demodulated signal. The graph in the right shows the evolution in time of the
DUC to the DDC phase for all frames. The peak-to-peak excursion is shown in the title of the graph.
The MATLAB slider control at the bottom allows for the frame selection. This acquisition has been
made while the NCOs in the DDC and the DUC work in the coherent mode.ccccvvviveniiiniennns 249

Confidential | 15

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

Figure 13-12 Radar pulse analysis when the DUC and DDC NCOs do not work in the coherent
mode. The graph in the right shows the linear evolution of the phase caused by the tiny frequency
difference between the NCOs in the transmitter and the receiver. The way the pulse is split
between the | and Q components (shown in the left), will change significantly depending on the

LYY LTor =T IS = 1T PP PP 250

Figure 13-13 Radar pulse analysis of one of the acquired frames when the digitizer works in the
direct (non-DDC) mode. The graph in the left shows the captured pulse including the carrier
information at full sampled rate (without decimation). The one in the right shows the spectrum of
the waveform by performing an FFT on the real data containing the modulated RF signal. The
coherence analysis does not make any sense when the DDC is not used so the corresponding
Braph IS NOT SNOWN. 1uuiiiiii i a e s s e s e s e s e s a e e s e saennensnnss 251

Confidential | 16

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Tables

Table 1-1 SCPI COmmON Mode COMMANGS vvvuuirrrusirrnnssrrnssrnnsssrsnsssrssssrsssssrnnsssrnsssrensssennss 20
Table 1-2 SCPI SYNtaX and StYIES ... uureeiereurreureresrerenresrenreerenreasenreareansenrenneerenreanrenrens 23
Table 2-1 Instrument CoOmMMAaNGS. ... uieeuiuieriaierrrrar s s r s s aaeas 25
Table 2-2 RUN MOde COMMANGS...tuienirrrnirnsrassenssassassssrssenssassassssssasssnssasssssensnnssenssasees 27
Table 2-3 Analog Output Control CoOMMAaNS c..vuiiuieieeiiiiiiieerirar e s s s s s eas e s e s aennensenns 30
Table 2-4 Marker Output COMMENUTS vuuvvureureurenreenrerenrrerenrrsrerearerenrrsrearennrerenreanrenrens 33
Table 2-5 Task COMMANGS +.ivruuiieruiiirrsirrrssrrss e s rrs s s s rrnssrrsssrsasssrsassrrnnsssenssssnnnss 35
Table 2-6 SCENArio COMMANGS 1.uirruriirrusisrrssrrsssrrnssrrsssrsnsssrnsssrsassrrsasssrnasssrnnsssnnssssnnnss 38
Table 2-7 Arbitrary Waveform CommandsS. ... ierruresrerenrsrrirersnrsrsresrsnrassssssrenrareassnrens 39
Table 2-8 Digitizer Group COMMAaNGS ..uiuiuieieieiaiiiiiarrrrarararara s sasarasasasarasasasasasas 42
Table 2-9 DSP Group COMMaNGS «uuuiuieiereeresisseenssseseesnsssessesssensenseasssensensenssnensensenns 48
Table 2-10 System COMMANGS v..uuiuiiuieiereiererireeeareresee st easeseesnsensenssnsnsensensenssnensensenns 52
Table 10-1 Digitizer and Generator Sampling Clock Ranges for Synchronized Operation............ 142
Table 10-2 Average Mode Digitizer and Sampling Clock SEttiNgS v.uvuvviviiriiieirriiriirinrereirenrenns 145
Table 11-1 Possible Data Storage Configurations .uv.vveiesessesresrenrsresresrenrsnrasssresrenrarerearens 165

Confidential | 17

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

1 Introduction

This manual lists and describes the set of SCPl-compatible (Standard Commands for
Programmable Instruments) remote commands used to operate the Tabor Proteus series
arbitrary waveform generator/transceiver. Refer to the Proteus User Manual for a description of
the functionality of the device. The complete listing of all commands used for programming the
Proteus is given in chapter 2 SCPI Commands List Summary, page 25.

1.1 Introduction to SCPI

Commands to program the instrument over the GPIB are defined by the SCPI 1993.0 standard.
The SCPI standard classifies a common language protocol. It goes one step further than IEEE-STD-
488.2 and defines a standard set of commands to control every programmable aspect of the
instrument. It also defines the format of command parameters and the format of values returned
by the instrument.

SCPI is an ASCll-based instrument command language designed for test and measurement
instruments. SCPl commands are based on a hierarchical structure, known as a tree system. In
this system, associated commands are grouped together under a common node or root,
consequently forming subsystems.

Part of the :INITiate subsystem is shown below to illustrate the tree system:

:INITiate
:CONTinuous
:STATe ON|OFF

INITiate is the root keyword of the command; CONTinuous is a second level keyword. State is third
level keyword. A colon (:) separates a command keyword from a lower level keyword.

1.2 Command Format

The format used to show commands in this manual is shown below.
FREQuency {<frequency>|MINimum|MAXimum}

The command syntax shows most commands (and some parameters) as a mixture of upper and
lowercase letters. The uppercase letters indicate the abbreviated spelling for the command. For
shorter program lines, send the abbreviated form. For better program readability, use the long
form.

For example, in the above syntax statement, FREQ and FREQUENCY are both acceptable forms.
Use upper or lowercase letters. Therefore, FREQ, FREQUENCY, freq, and Freq are all acceptable.
Other forms such as FRE and FREQUEN will generate an error.

The above syntax statement shows the frequency parameter enclosed in curly brackets ({}). The
brackets are not sent with the command string. A value for the frequency parameter (such as
"FREQ 1e+9”) must be specified.

Some parameters are enclosed in square brackets ([]). The brackets indicate that the parameter
is optional and can be omitted. The brackets are not sent with the command string.

Confidential | 18

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

1.3 Command Separator

A colon (:) is used to separate a command keyword from a lower level keyword as shown below:
:SOUR: FUNC:MODE ARB

A semicolon (;) is used to separate commands within the same subsystem, and can also minimize
typing. For example, sending the following command string:

:INST:CHAN 1;:0UTP ON

is the same as sending the following two commands:

:INST:CHAN 1

:OUTP ON

Use the colon and semicolon to link commands from different subsystems. For example, in the
following command string, an error is generated if both the colon and the semicolon are not used.
:FREQ le9;:0UTP ON

1.4 MIN and MAX Parameters

Substitute MINimum or MAXimum in place of a parameter for some commands. For example,
consider the following command:

FREQuency {<frequency>|MINimum|MAXimum}
Instead of selecting a specific frequency, substitute MIN to set the frequency to its minimum value
or MAX to set the frequency to its maximum value.

1.5 Querying Parameter Setting

Query the current value of most parameters by adding a question mark (?) to the command. For
example, the following command sets the output function to square:

SOUR:FUNC: SHAP SQR
Query the output function by executing:

SOUR: FUNC: SHAP?

1.6 Query Response Format

The response to a query depends on the format of the command. In general, a response to a query
contains current values or settings of the generator. Commands that set values can be queried for
their current value. Commands that set modes of operation can be queried for their current mode.
IEEE-STD-488.2 common queries generate responses, which are common to all IEEE-STD-488.2
compatible instruments.

1.7 SCPI Command Terminator

A command string sent to the generator must terminate with a <new line> character. Command
string termination always resets the current SCPI command path to the root level.

1.8 IEEE-STD-488.2 Common Commands and Queries

Since most instruments and devices in an ATE system use similar commands that perform similar
functions, the IEEE-STD-488.2 document has specified a common set of commands and queries

Confidential | 19

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

that all compatible devices must use. This avoids situations where devices from various
manufacturers use different sets of commands to enable functions and report status.

The IEEE-STD-488.2 treats common commands and queries as device dependent commands. For
example, *TRG is sent over the bus to trigger the instrument. Some common commands and
gueries are optional, but most of them are mandatory.

The following is a complete listing of all common-commands and queries, which are used by the
Proteus series.

Table 1-1 SCPI Common Mode Commands

Keyword Notes

*CLS Clear the error-list (and therefore also the corresponding bit in
the STB).
*IDN? The Identification query outputs an identifying string. The

response will show the following information:

<company name>, <model name>, <serial number>, <FPGA
version>

*OPC? Returns the ASCIl character "1" to the output buffer after all
the previous commands have been executed. The command is
used for synchronization between a controller and the
instrument using the MAV bit in the Status Byte or a read of
the Output Queue. Reading the response to the *OPC? query
has the advantage of removing the complication of dealing
with service requests and multiple polls to the instrument.
However, both the system bus and the controller handshake
are in a temporary hold-off state while the controller is
waiting to read the *OPC? query response.

*OPT? The options query returns a comma-separated list of all of the
instrument options currently installed on the signal generator,
such as the number of channels and memory size.

*RST Resets the instrument to its default state.

*TRG Same as 4.14:TRIGger:IMMediate, page 71.

*TST? The Self-Test query initiates the internal self-test and returns
For future use. one of the following results:

0— All tests passed.
1 - One or more tests failed.

1.9 SCPI Parameter Type

The SCPI language defines four different parameter types to be used in program messages and
response messages: numeric, discrete, Boolean, and binary block.

1.9.1 Numeric Parameters

Commands that require numeric parameters will accept all commonly used decimal
representations of numbers including optional signs, decimal points, and scientific notation.
Special values for numeric parameters like MINimum and MAXimum are also accepted.

Engineering units using numeric parameters (e.g., MHz or kHz) can also be sent. If only specific
numeric values are accepted, the function generator will ignore values which are not allowed and

Confidential | 20

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

will generate an error message. The following command is an example of a command that uses a
numeric parameter:
VOLT :AMPL <amplitude>

1.9.2 Discrete Parameters

Discrete parameters are used to program settings that have a limited number of values (i.e., FIXed,
USER and SEQuence). They have short and long form command keywords. Upper and lowercase
letters can be mixed. Query responses always return the short form in all uppercase letters. The
following command uses discrete parameters:

SOUR:FUNC:MODE {ARBitrary | TASK }

1.9.3 Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. The generator
accepts "OFF" or "0" for a false condition. The generator accepts "ON" or "1" for a true condition.
The instrument always returns "0" or "1" when a Boolean setting is queried. The following
command uses a Boolean parameter:

OUTP:STAT { OFF | ON }

The same command can also be written as follows:
OUTP:STAT {0 | 1 }

1.9.4 Binary Block Parameters

Binary block parameters are used for transferring data blocks to the generator, for example,
waveforms, segment table, sequence table etc. The binary block parameter format is
#<header><binary data>

Where the header, holds the data size, followed by the data itself. For example, the following
command uses the binary block parameter #42048<binary data> to transfer a 1024 points
waveform to the generator

TRAC:DATA#42048<binary block>

Information on commands using binary blocks is given later in this manual, e.g., refer to
6.8 :MARKer:DATA [<offset>]#<header><binary block>, page 97.

1.10 Queries for Commands with Numeric Parameters

Commands that require numeric parameters accept queries that return the accepted legal values
of the parameter, as well as the default value. The accepted queries are RANGe?, MIN?, MAX?
and DEFault?. The command syntax is the command followed by the required query, e.g.,

:FREQ RANGe?

1.10.1 RANGe?

The RANGe? query will return the legal range of the accepted values of the numeric parameter
used in the command. The response format ismin value, max value, default value.

Example
Query: VOLT RANG?
Response: 0.001,1.3,0.5

Confidential | 21

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

1.10.2 MIN?

The MIN? query will return the legal minimum accepted value of the numeric parameter used in
the command. The response format is min value.

Example

Query: VOLT MIN?

Response: 0.001

1.10.3 MAX?

The MAX? query will return the legal maximum accepted value of the numeric parameter used in
the command. The response format is max value.

Example
Query: VOLT MAX?
Response: 1.3

1.10.4 DEFault?

The DEF? query will return the default value of the numeric parameter used in the command. The
response format is default value.

Example
Query: VOLT DEF?
Response: 0.5

Note

As these RANGe?, MIN?, MAX? and DEFault? queries are standard for all commands
with numeric parameters they are only described above and listed only in the SCPI
commands list summary tables in 2 SCPI Commands List Summary, page 25.

1.11 SCPI Syntax and Styles

Where possible, the syntax and styles used in this manual follow those defined by the SCPI
consortium. The commands on the following pages are broken into three columns: the Keyword,
the Parameter Form, and Default.

The Keyword column provides the name of the command. The actual command consists of one or
more keywords, since SCPI commands are based on a hierarchical structure, also known as the
tree system. Square brackets ([]) are used to enclose a keyword that is optional when
programming the command. Therefore, the Proteus series instrument will process the command
to have the same affect whether the optional node is omitted by the programmer, or not. Letter
case in tables is used to differentiate between the accepted short form (upper case) and the long
form (upper and lower case).

The Parameter Form column indicates the number and order of a parameter in a command and
their legal value. Parameter types are distinguished by enclosing the type in angle brackets
(<>). If parameter form is enclosed by square brackets ([]) these are then optional (pay
attention to be sure that optional parameters are consistent with the intention of the associated

Confidential | 22

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

keywords). The vertical bar (|) can be read as "or" and is used to separate alternative parameter
options.

Table 1-2 SCPI Syntax and Styles

Convention Description Example

{} Braces indicate that parameters may be used in | :LIST:POWer <val>{,<val>}
the command once, or several times, or not at | 3 single power listing:
all. LIST:POWer 5

a series of power listings:
LIST:POWer 5,10,15,20

<> Angle brackets indicate that their contents are | :FREQuency:STARt <val><unit>
not to be used literally in the command. They In this command, the words <val> and
represent the required parameters. <unit> should be replaced by the

actual frequency and unit.
:FREQuency:STARt 2.5GHZ

[l Square brackets indicate that the enclosed :FREQuency[:CW]?

keywords or parameters are optional when SOURCce and CW are optional items.
composing the command. The commands will
be executed even if they are omitted.

A vertical stroke between keywords or :AM:MOD DEEP|NORMal
parameters indicates alterative choices. For DEEP or NORMal are the choices.
parameters, the effect of the command varies
depending on the choice.

Confidential | 23

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

1.12 Proteus SCPI Commands

The table below lists all of the Proteus series SCPI commands. The commands are arranged in
logical groups that provide similar functionality, and make it easier to understand the various
commands.

The commands are divided into 8 different groups, each describing a different type of operation.

Channel and group control commands
Run mode commands

Analog output commands

Marker output commands

Task commands

Scenario commands

Arbitrary waveform commands
Digitizer commands

System commands

Detailed descriptions of each of the various commands are given in the following chapters. Note
that the table lists the commands of the entire Proteus series and commands may vary depending
on your model and installed options.

Confidential | 24

Proteus Programming Manual Rev. 1.4

@TABOR‘ ELECTRONICS

2 SCPI Commands List Summary

2.1 Instrument Commands

Refer to section 3 Instrument Commands, page 54 for details.

Table 2-1 Instrument Commands

Keyword Parameter Form Default Notes
:(INSTrument
:ACTive

[:SELect 1.. 1 Select the addressed instrument (1 is

the master instrument).
:CHANnel

[:SELect 1]..]12 1 Select the programmable channel (of
the selected instrument).

:OFFSet 0to 1024 0 Set the delay between channels in
units of samples.

:RANGe? Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:COUPle The skew and offset between DAC1
and DAC2.

SKEW -3e-9 to 3e-9 0 Skew (in seconds) between DAC 1
and DAC 2 of the module of the
selected channel.

:RANGe? Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:XINStrument Synchronizing multiple Proteus
module instruments.

Confidential | 25

@TABOR‘ ELECTRONICS

Keyword
:MODE?

Proteus Programming Manual

Parameter Form
SING | MASTer | SLAVe

Default
0

Rev. 1.4

Notes

The mode of the instrument. It can
be single, master or slave. Query
only. The mode is set by the system
at power up.

:CHAIN

Use this sub group command to
define a chain of instruments
comprised of a parent and children.
Only the parent receives the SCPI
commands. To access the child
instruments use the INST:ACT:SEL
command.

:SYNChronize

Multi-Instrument sync

:ROLE?

SINGle | LEADer |
FOLLower

SINGle

The query will return the
synchronization mode of the active
instrument (query only). The role is
set by the system at power up and
can be changed by the :FOLLowers
command.

SINGle — The instrument is not part
of a chain.

LEADer — The instrument is the
leader of the chain.

FOLLower — The instrument is a
follower in the chain.

:FOLLowers

<number_of_follower_ins
truments>

Make the n consecutive instruments
synchronization followers of this
instrument. If n=0 and the
instrument is a leader-instrument
then the chain is disassembled.

:OFFSet
Future Release

0 to n (n = waveform
length)

Multi-instrument offset.

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:SKEW
Future Release

-5e-9 to 5e-9

Multi-instrument skew.

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

Confidential | 26

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form Default Notes
:MINimum? Query only. It returns the minimum
legal value.
:MAXimum? Query only. It returns the maximum
legal value.
:DEFault? Query only. It returns the default
value.
2.2 Run Mode Commands

Refer to section 4 Run Mode Commands, page 59 for details.

Table 2-2 Run Mode Commands

Keyword Parameter Form Default Notes
:INITiate
:CONTinuous
[:STATe OFF|ON |01 1 Defines the continuous run mode of
the instrument.
TRIGger
:COUPle
[:STATe OFF|ON|O]|1 0 When all modules in the instrument
are set to ON it will receive the
trigger from the MASTER.
:SOURce
:ENABIe NONE|TRG1|TRG2|TRG3 | NONE The source of the enabling signal of
|TRG4|TRG5|TRG6 | the selected channel.
INTernal | CPU|FBTRg|
HWControl
:DISable NONE|TRG1|TRG2|TRG3 | NONE The source of the abort signal of the
| TRG4 | TRG5| TRG6 | selected channel.
INTernal | CPU|FBTRg|
HWControl
[:ACTive]
:SELect TRG1|TRG2|TRG3|TRG4| | TRG1 Select the trigger for programming.
TRG5|TRG6|INTernal
:STATe OFF|ON |01 0 Enable / disable the selected
external trigger (channel
dependent).
:CPU
MODE LOCAL | GLOBAL GLOBAL CPU trigger mode.
LOCAL — The active channel receives
the CPU trigger.
GLOBAL — All channels receive the
same CPU trigger simultaneously.
:GATE

Confidential | 27

@TABOR‘ ELECTRONICS

Keyword

[:STATe

Proteus Programming Manual Rev. 1.4

Parameter Form

OFF|ON |01

Default
0

Notes

Enable/disable gated mode of the
selected external trigger (channel
dependent). (Internal trigger has no
gate mode, so its gate mode is only
OFF.)

:LEVel?

-5to 5, 0.1V resolution

0.0

The threshold voltage level of the
selected external-trigger (shared by
all channels of the same module).

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:COUNt

Defines the number of times the
current segment will be played for a
given trigger signal.

:RANGe?

Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:WIDTh

0, from 10e-9 to 2s, 2ns

resolution

The pulse-detect width of the
selected trigger of the selected
channel. It is relevant only for an
external trigger. Zero means edge.

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

Confidential | 28

@TABOR‘ ELECTRONICS

Keyword
:SLOPe

Proteus Programming Manual

Parameter Form

POSitive | NEGative

Default
POS

Rev. 1.4

Notes

The valid slope for the selected
external trigger (channel
dependent).

:TIMer

200e-9 to 2.0s

1.50E-05

The period of the internal trigger in
seconds (channel dependent).

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:IMMediate

Same as *TRG. Triggers the
generator from the remote
interface.

EVENtually | IMMediate

EVEN

Use this command to define or
query the trigger mode.

Proteus with low trigger jitter
option.

[:STATe

OFF|ON |01

Activate low jitter option.

:IDLE

[:TYPE}

DC | FIRSt | CURRent

DC

Set the type of the idle waveform
that will be played when waiting for
the trigger (channel dependent).

:LEVel

0 to maximum DAC level

Mid DAC
level

The DAC level of IDLE DC.

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:PULSe

[:STATe

Future Release

OFF|ON |01

OFF

Turn on the pulse counter for the
external trigger.

:COUNt?
Future Release

<count>

Query returns the number of
counted pulses.

Confidential | 29

@TABOR‘ ELECTRONICS

Keyword
:RESet
Future Release

Parameter Form

Proteus Programming Manual

Default

Rev. 1.4

Notes

Reset the pulse counter.

:DELay external-trigger: O to at 0 Set the delay of the selected
least 6.55us in sysclk external trigger of the selected
resolution channel. Under the hood it is
internal-trigger: only O rounded to sysclk ticks (between 0
and 2047, where 0 means no delay).
:HOLDoff external-trigger: from O 100ns Set the holdoff of the selected

Future Release

to TBD.
Internal-trigger: only O
(no holdoff)

external
trigger

external trigger of the selected
channel. Incoming trigger will be
ignored during the holdoff period.

2.3 Analog Output Control Commands

Refer to section 5 Analog Output Control Commands, page 77 for details.

Keyword
:OUTPut

Parameter Form

‘Default

Table 2-3 Analog Output Control Commands
Notes

[:STATe

OFF|ON |01 0

Output control

[:SOURce]

:MODE

DIRect |[NCO|DUC DIR

Generation mode.

DIRect — Direct arbitrary waveforms
(NCO AND DUC OFF)

NCO — NCO generated signals only
(NCO ON, DUC OFF)

DUC — 1Q modulations (NCO ON,
DUC ON).

:PTRepeat

X1|X2|X4|X8 X1

Set the point repeat factor. The

Point Repeat factor enables the user
to configure the unit so that each
sample point that is sent to the FPGA
is repeated by the point repeat
factor. This essentially enables the
user to lower the SCLK below the
minimum 1GS/s limit. For example, if
point repeat is set to x4, each
sample is sent 4 times to the DAC,
and thus if the SCLK is 1GS/s the
output appears as if the SCLK is
250MS/s. Note that this can be used
only with segments that are normal
(not fast).

:INTerpolation

NONE |X2|X4|X8| NONE

Set the interpolation factor. Relevant
only for models with DUC option. It
is shared by all channels in the same
module, and in case of synchronized
master slaves chain, all slaves have

Confidential | 30

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form ‘Default Notes
the same interpolation mode of the
master (like sampling clock rate).
:NCO
MODE SINGle | DUAL SING Set the NCO mode. In dual mode,
the user can control two NCOs (1 or
2).

:CFRequency<1|2> | 0 Hz to sclk 4e+08 Set the carrier frequency for the
selected NCO <1|2> of the selected
channel.

:PHASe<1]|2> <phase in degrees> 0 Set the phase of the selected NCO
<1|2> (in degrees) of the selected
channel.

:SIXDb<1|2> OFF|ON|0]|1 0 Enable/disable 6dB gain of the
selected NCO<1|2> of the selected
channel.

:IQModulation NONE|HALF|ONE|TWO NONE Set the IQ modulation type.
It is shared by all channels in the
module and by all modules in a
synchronized master-slaves chain.
The 1Q modulation type are
classified by the number of IQ pairs
per channel:
HALF —'I' in channel 1 and 'Q" in
channel 2.
ONE — 1 1Q-Pair, organized in pairs
of 'I' sample followed by 'Q' sample.
TWO - 2 1Q pairs organized in 4-
tuples of the form (11,q1,12,92)

:FREQuency

[:RASTer 1e9to 9e9 | MINimum | | 1.0e+09 Sampling rate (samples per second).
MAXimum

:RANGe? Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:SOURce INTernal | EXTernal INT Selects the SCLK source.

:OUTPut

[:STATe OFF|ON |01 0 The state of the output clock.
:FUNCtion

Confidential | 31

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form ‘Default Notes
:MODE
:TYPE ARBitrary | TASK ARB Arbitrary — Plays the selected
segment (:FUNCtion:SEGment).
TASK — Plays the active scenario.

:SEGMent 1to 64k 1 The number of the segment selected
for playback in the selected channel
in case of Arbitrary mode. The first
128 segment are "Fast-Segments".

:RANGe? Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:TASK 1to 64k 1 The number of the first task for
playback in the selected channel in
case of Task-Mode.

:RANGe? Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:ROSCillator

:SOURce INTernal | EXTernal INT Source for the 10 MHz reference
signal.

:FREQuency 10M | 100M 100M When the reference oscillator is set
to external, select the frequency of
the reference signal that will be
entered in the REF IN connector,
10MHz or 100MHz.

:VOLTage
[:AMPLitude le-3t0 1.2 | MINimum | | 0.5 Output amplitude
MAXimum

:RANGe? Query only. It returns the minimum

legal value, the maximum legal

Confidential | 32

@TABOR‘ ELECTRONICS

Proteus Programming Manual Rev. 1.4

value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:OFFSet -0.5t0 0.5 | MINimum | 0 Output offset.
MAXimum

:RANGe? Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default

value.

2.4 Marker Output Commands

Refer to section 6 Marker Output Commands, page 93 for details.

Keyword
:MARKer

Table 2-4 Marker Output Commands

Parameter Form 'Default

Notes

:SELect

112134 1

Select the programmable marker of
the selected channel.

[:STATe

OFF |ON | 0] 1 0

Marker activation.

:DELay

:COARse

16-bit DAC mode: 0
-255-254

8-bit DAC mode: -1024 -
1016

Marker coarse delay from the output
of the corresponding channel (in
wave points).

:RANGe?

Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

Confidential | 33

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

-600ps to +600ps

Marker fine delay from output (in
seconds).

Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:VOLTage

:LEVel

Oto 32

The marker gain level in dB.

:RANGe?

Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:PTOP

0.05 Vpp to 1.2 Vpp

0.5

The marker peak-to-peak voltage.
There are 32 available voltage levels
corresponding to 32 steps of 1 dB
down from ~1.2V. The best one
(according to the requested voltage
value) is selected.

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:OFFSet

-0.5Vto 0.5V

Marker offset level in volt.

:RANGe?

Query only. It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

Confidential | 34

@TABOR‘ ELECTRONICS

Proteus Programming Manual Rev. 1.4

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:DATA

[<offset>]#<header>
<binary_block >

Write or read markers data to (or
from) the specified offset in the
selected segment.

:MEMory

<offset>#<header>
<marker-data>

Write or read markers data to (or
from) the specified offset of the
arbitrary-memory space. Direct
download of marker data to the
arbitrary memory without any
segment attributes.

:FILE

:NAME

#<header><binary_block>

File path name passed as binary
data.

:OFFSet

<start-offset inside the
file in bytes>

The start offset inside the file in
bytes.

:DESTination

SEGMent | MEMory

SEGM

The destination to load/store the file
data:

SEGMent — The selected segment.
MEMory — The arbitrary-memory
space.

:LOAD

[[<offset>], <size>]

Load marker data from file to the
memory (no query). If the offset and
size are not specified then the whole
DESTination is written.

:STORe

[[<offset>,] <size>]

Store markers-data from the
memory to file (no query). If the
offset and size are not specified then
the whole DESTination is written.

2.5 Task Commands

Refer to section 7 Task Commands, page 102 for details.

Table 2-5 Task Commands

Keyword Parameter Form 'Default | Notes
:TASK
:COMPoser
:LENGth 0 to 64k 0 Allocate an array of task table rows
for the task table composer.
:SELect 1to 64k 1 Select the task to define.
:RANGe? Query only, It returns the minimum

legal value, the maximum legal

Confidential | 35

@TABOR‘ ELECTRONICS

Keyword

Proteus Programming Manual

Parameter Form

Rev. 1.4

'Default | Notes

value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:DEFine

:TYPE

SINGle | STARt | END | SEQ | SINGle

Task type:

Single — Not part of task-sequence.
Start — The start of task-sequence.
END — The end of task-sequence

SEQ - Inside a task-sequence
(neither first nor last).

:LOOPs

Oto 1M 1

Number of loops for the task

:RANGe?

Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:SEQuence

0to 1M 1

Number of loops for the sequence.

:RANGe?

Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:SEGMent

<segment-number> 1
1- 64k

The segment that is associated with
the task.

:IDLE

[:TYPE

DC | FIRSt | CURRent DC

The behavior in the idle state.

:LEVel?

0 to max DAC level (255 /
65535)

Mid DAC

The DAC level used for the DC idle
waveform.

Confidential | 36

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form 'Default | Notes
:ENABIe NONE|TRG1|TRG2|TRG3| | NONE Enabling signal for the task.
TRG4|TRG5|TRG6 |
INTernal | CPU|FBTRg|ANY
ABORt NONE|TRG1|TRG2|TRG3 | | NONE The abort signal for the task.
TRG4|TRG5|TRG6 |
INTernal | CPU|FBTRg|ANY
JUMP EVENtually | IMMediate EVEN Jump mode.
:DESTination NEXT|FBTRg|TRG|NTSel|S | NEXT Next task destination:
CENario|DSP|DSIG NEXT — The task defined by the
command :NEXT1.
FBTRg — Select the next task by the
feedback trigger value.
TRG — NEXT1 upon Triggerl, Next2
upon Trigger2.
NTSel — The next task in the table.
SCENario — The beginning of next
scenario.
DSP - Destination is NEXT1 current
segment to be generated is
according to decision block
condition in DSP.
DSIG — NEXT1 if digitizer-signal = 1,
NEXT2 if digitizer-signal = 0.
NEXT1 <task-number> 1 Next task for TRG1 input (zero
1 to 64k means end).
:NEXT2 <task-number> 0 Next task for TRG2 input (zero
1 to 64k means end).
:DELay 0 to 65,536 0 Delay in clocks before executing
next task.

:RANGe? Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:KEEP OFF|ON |01 0 Wait for the trigger when looping.
:DTRigger OFF|ON|O|1 0 Generate the digitizer trigger.
:WRITe <offset in task-table rows> | 0 Write the composer's array to the
task-table of the selected channel at
the specified offset (no query).

Confidential | 37

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form 'Default | Notes
:READ <offset in task-table rows> | 0 Read the composer's array from the
task-table of the selected channel at
the specified offset (no query).

:CURRent? Query only. Returns the current task
number.

:SYNC Issue this command to synchronize
the task tables of all channels. This
command needs to be issued every
time before generation is started.

:DATA [<offset>]#<header><binar | 0 Write or read a block of rows to (or

y_block> from) the specified offset in the task
table of the selected channel.

:FILE Read task from file

NAME t#t<header><binary_block> File path-name passed as a binary-
block.

OFFSet <start-offset> 0 The start offset inside the file in

bytes.

:LOAD [<offset in task-table Load row-data from the file to the
rows>,<number of task- task-table of the selected channel
table rows>] (no query). If the offset and number

of tasks are not specified, then the
whole task-table is written. (If the
file is too small then the rest of the
task-table rows are zeroed).

:STORe [<offset in task-table Store rows-data from the task table
rows>,<number of task- of the selected channel in the file
table rows>] (no query). If the offset and number-

of rows are not specified then the
whole task-table is stored.

:ZERO

[:PORTion <offset in task-table Reset portion of the task-table of
rows><number of task- the selected channel (no query).
table rows>

:ALL Reset the whole task-table of the

selected channel (no query)

2.6 Scenario Commands

Note
Scenario commands are planned for a future release.

Refer to section 8 Scenario Commands, page 118 for details.

Table 2-6 Scenario Commands

‘Default | Notes

Keyword 'Parameter Form

:SCENario

Confidential | 38

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form 'Default | Notes
:DEFine <scenario-number>, <task- Define the specified entry in the
number>, <loops> scenario-table of the selected
channel.
:DATA [<offset>,]##<header><binar Write data to the specified offset in
y_block > the scenario table of the selected
channel.
:FILE
:NAME #t<header><binary_block> File path-name passed as block of
binary data.
:OFFSet <offset in the file> 0 The start offset inside the file in
bytes.
:LOAD [<offset>, Load the scenario table of the
<num_of_scenarios>] selected channel from the file (in
binary format)
:STORe [<offset>, Store the scenario table of the
<num_of_scenarios>] selected channel in the file (in binary
format).
:ZERO
[:SINGle <scenario-number> Reset the data of a single row in the
scenario table of the selected
channel (no query).
:ALL Reset the data of all rows in the

scenario-table of the selected
channel (no query).

2.7 Arbitrary Waveform Commands

Refer to section 9 Arbitrary Waveform Commands, page 122 for details.

Table 2-7 Arbitrary Waveform Commands

Keyword Parameter Form 'Default Notes
:TRACe

[:DATA [<offset>]#<header> Write or read waveform data to the
<binary_block> selected segment starting at the

specified offset.

:FORMat ule | U8 ule Set the format of the user waveform

usfor |data.
P9082x | U16 — Unsigned 16 bit.
U8 — Unsigned 8 bit.

:MEMory <offset_in_wave- Write waveform data to the
points> #<header> arbitrary-memory space starting
<wave-data> from the specified offset.

The query format is:
:TRAC:MEMory? [<offset in wave-
points>,]<size in wave-points>.

:SEGMents

Confidential | 39

@TABOR‘ ELECTRONICS

Keyword
[:DATA

Proteus Programming Manual

Parameter Form

[<first segment number>,]
#t<header><binary_block>

Rev. 1.4

'Default | Notes

Delete all segments (of the selected
channel) and define N consecutive
new segments (no query). The N
segment-lengths, expressed in bytes
of wave-data, are specified by the
binary-block which consists of N
uint64 values (8N bytes). The new
segments are allocated, one after
the other, from the beginning of the
arbitrary-memory space.

:FILE

:NAME

f#t<header>
<binary_block>

File path-name passed as a block
of binary-data.

:OFFSet

<offset in bytes>

Set the start offset inside the file
in bytes.

:LOAD

[[<first segment
number>,]J<number of
segments>]

1,1
(until
last
segment

)

This command will load the segment
table data from the file defined by
the : TRACe : SEGM: FILE : NAME
command to the Proteus unit
memory. If the first segment is not
specified, then the default segment
is 1.

:FILE

:NAMe

#<header><binary_block>

File path-name passed as a block of
binary-data.

:OFFSet

<offset in bytes>

Set the start offset inside the file in
bytes.

:DESTination

SEGMent | MEMory

SEGM

The destination to load/store the file
data:

SEGMent — The selected
(programmable) segment.

MEMory — The arbitrary-memory
space.

:LOAD

[<offset in the segment in
wave-points>, <size in
wave-points>]

Load waveform data from file to the
memory of the programmable
segment (no query). If the offset and
the number of wave-points are not
specified, then the whole segment is
written.

:STORe

[<offset in the segment in
wave-points>, <size in
wave-points>]

Store waveform-data from the
memory of the programmable
segment in file (no query). If the
offset and the number of wave-
points are not specified, then the
whole segment is read.

:STReaming

Bypass the on-board waveform
memory and stream the waveform

Confidential | 40

@TABOR‘ ELECTRONICS

Keyword

Proteus Programming Manual

Parameter Form

Rev. 1.4

'Default | Notes

data straight from the controlling
PC.

FILE | DYNamic

DYNamic

Define how the data is transferred
to the Proteus.

FILE — The waveform data from a
file is transferred to the Proteus.
DYNamic — The waveform data is
generated continuously and
transferred to the Proteus.

:STATe

OFF|ON |01

Enable or disable the streaming
mode. Only for units with installed
streaming option (STM).

:DEFine

[:SIMPle

[<segment_number>,]
<segment_length>

Define simple segment (no query).
The segment length is expressed in
wave-points. The segment-number
is optional (for backward
compatibility). If the segment-
number is not specified then the
selected (programmable) segment is
defined.

:LENGth?

Query the length in wave-points of
the selected segment.

:ZERO

[:SEGMent

[<segment number>]

Reset the markers and waveform
data of a single segment (no query).
The segment-number is optional. If
it is not given then the current
segment is zeroed.

:ALL

Reset all the arbitrary-memory
space of the selected channel's DDR
(no query).

:DELete

[:SEGMent

<seg-number>

Delete one segment

:ALL

Delete all segments of the
programmable channel's DDR.

:SELect

[:SEGMent

<segment number>

Select the programmable segment.
Do not confuse it with the selected-
segment for playback
(:FUNCtion:SEGMent).

:SOURce

BUS | EXTernal | ADC |
DCT

BUS

Source for segment selection (for
playback).

BUS — By software Request
(:FUNCtion:SEGMent).

EXT — By segment-select connector

Confidential | 41

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Keyword Parameter Form 'Default | Notes

(if this option is supported).

ADC — By ADC trigger (if this option
is supported).

DCT — By daisy chain trigger. Future

Release.
:TIMing EVENtually | IMMediate EVEN Transition mode.
Future Release
:FREE? Query the available waveform
memory
:FRAG? Query the fragmentation level

(between 0 and 1) of the of the
selected channel's memory-space.

:DEFRag Defragment the arbitrary-memory
space of the selected channel (no
query)

2.8 Digitizer Group Commands

Refer to section 10 Digitizer Commands, page 136.

Table 2-8 Digitizer Group Commands

Keyword Parameter Form 'Default Notes
:DIGitizer
[:SELect {DIG1 | DIG2} DIG1 Select digitizer.
:MODE {DUAL | SINGle} DUAL Select single channel use or dual
channel use.
:CHANnel
[:SELect {CH1 | CH2} CH1 Select target channel for SCPI
commands setup.
:STATe { DISabled ENABIled | } DIS Enable/disable the channel for
acquisition.
:RANGe {HIGH | MEDium | LOW} HIGH Set the voltage range.
:OFFSet <offset_level> 0 Set offset level.
:RANGe? Query only, It returns the minimum

legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:DDC

Confidential | 42

@TABOR‘ ELECTRONICS

Keyword

:MODE

Proteus Programming Manual

Parameter Form

{REAL|COMPlex} REAL

Rev. 1.4

'Default | Notes

Set whether data path is REAL or
COMPlex.

Complex Mode is available only in
Dual channel mode, and forces
decimation X16 (the sampling rate is
sclk/16).

:DECimation?

{NONE | X1 | X4 | X16} X16

Set the decimation factor when
working in complex mode. In real
mode decimation is X1. In complex
mode user can set X4 or X16. For
loopback mode the decimation
factor must be set to X4. When
querying the decimation factor, the
possible responses are X1|X4|X16.

OFF| ON| 0] 1 0

If the state is ON the channel 1 is the
source of DDC1 and DDC2. Note:
Only for :MODE:SINGle and
sampling rate <= 2.7GS/s

Otherwise, channell is the source of
DDC1 and channel2 is the source of
DDC2. Note: Only for :MODE:DUAL.

:CFRequency<N>

OHz to MAX DIG SCLK 1e9

N =1 or 2. Carrier frequency for the
selected DDC <1|2>

:PHASE<N>

<phase in degrees> 0

N =1 or 2. The phase of the selected
DDC <1]|2> (in degrees)

:CLKSource

DIG | AWG DIG

When the state is AWG the NCO of
the DUC and NCO of the DDC are
synchronized to the same source.
Note: This limits the DAC and ADC
clocks to work within certain ranges.

:ACQuire

[:FRAMes]

:DEFine

<num_of_frames>, 14800

<frame_length>

Reserve memory-space and define
the frame layout for the digitizer
channel with state enabled.

:FREE

No Query. Frees the memory
allocated to the DDR.

:CAPTure

[:SELect

<1st frame>,<num-frames>

Define which frames (from the
reserved frames) that will be
captured once the capturing starts.

:ALL

Capture all frames.

:MARKer

OFF| ON| 0] 1 0

If the marker-mode is enabled then
the LSB of the captured data is a
marker that holds the state of the
capturing trigger signal.

Confidential | 43

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form 'Default | Notes

:STATus? Get the status of the acquisition.
The format of the answer is <frame-
done>,<all-frames-done>,<pulse-
counter-busy>,<frames-count>.

:AVERage

:STATe OFF| ON| 0] 1 OFF Enable averaging of the captured
frame. Note that this limits the
frame size to 10224 samples. Each
frame that is defined is averaged the
number of times as set in the
AVER:COUN command.

:COUNt <# frames to average can 2 Number of consecutive acquisitions

range from 2 to 16M> to average.
:ZERO
:[SELect <1st frame>,<num Set the designated entries in the
frames> <fill value> acquisition memory to the “fill
value. No Query. num-frames = -1,
means to the last frame. Fill-value is
12bits.
:ALL <fill value between 0 and Fill the memory of all frames with
4095> the specified 12-bits value (no
query).
:FREQuency
[:RASTer {<sclk> | MAXimum 2.00e+9 | Set digitizer SCLK.
MINimum}

:RANGe? Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum? Query only. It returns the minimum
legal value.

:MAXimum? Query only. It returns the maximum
legal value.

:DEFault? Query only. It returns the default
value.

:SOURce {INTernal | EXTernal} INT Set the digitizer clock source.
:INITiate
[:STATe {OFF| ON| 0] 1} OFF Start or stop the acquisition.
‘TRIGger
[:IMMediate Force a trigger event for the digitizer
when the trigger source is set to
CPU.
:SOURce {CPU|EXT CH1|CH2|TASK1 | EXT The source of the trigger that
| TASK2 | TASK3 | TASK4 | initiates the capturing of the
MR1|MF1|MR2|MF2 selected digitizer.

Confidential | 44

@TABOR‘ ELECTRONICS

Keyword

Proteus Programming Manual Rev. 1.4

Parameter Form

'Default | Notes

CPU - By SCPI Command
:DIG:TRIG:IMM

EXTernal —The external-trigger of
the digitizer.

CH1/CH2 - Self trigger from channel
1 or channel 2 of the digitizer.
TASK[n] — Trigger created by task
from the nt" channel of the AWG (of
the same module).

MR[1/2] - Raise of the marker-bit
on channel 1/2 of the digitizer.
MF[1/2] - Fall of the marker-bit on
channel 1/2 of the digitizer.

:LEVel<1]2>

from -5V to +5V

Set the voltage threshold level<1|2>
of the external trigger of the
digitizer.

:RANGe?

Query only, It returns the minimum
legal value, the maximum legal
value, and the default value
separated by commas.

:MINimum?

Query only. It returns the minimum
legal value.

:MAXimum?

Query only. It returns the maximum
legal value.

:DEFault?

Query only. It returns the default
value.

:SELF

:LEVel

Low Range: -125mV to
+125mV

Medium Range: -200mV to
+200mV

High Range: -250mV to
+250 mV

Set the threshold voltage level for
the self-trigger for the selected
channel of the digitizer.

:TYPE

{ EDGE | GATE | WEDGe |
WGATe | CUSTom }

EDGE

Set the trigger type:

EDGE - Sets LEV1 as the trigger
threshold. Slope setting will set the
Pos and negative edge values.
GATE — Sets LEV1 as the trigger
threshold. Slope setting will set
whether gate starts when crossing
above (POS) or below the level
(NEG).

WEDGe — Window Edge. Defines a
window for edge trigger can be
combined with width.

WGATe — Window Gate. Defines a
window for the gate trigger.
CUSTom — Future Release

Confidential | 45

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form 'Default | Notes
:CONDition {GREater | SHORter} GREater | Specifies the criteria to select time-
related trigger events.
:SLOPe {POS | NEG } POS Set which trigger edge to trigger on
when type is set to edge.
:WINDow
:STARt <thrshold-level index Window start edge: <level-index
(1/2)>, POSitive | NEGativ (1/2)>, <slope (pos/neg)>
:STOP <thrshold-level index Window stop edge: <level-index
(1/2)>, POSitive | NEGativ (1/2)>, <slop (pos/neg)>
:WIDTh <trigger_event_width> Set the valid trigger width when
trigger type width is selected.
:HOLDoff <holdoff_time> 0 Set the time the trigger input is
Future Release ignored after the previous trigger
event
:DELay
:EXTernal <delay_time> 0 Set the time delay of the external-
trigger of the digitizer.
The resolution is the digitizer's
sysclock ticks which is
- 10 sampling-clock ticks in case of
dual-channels mode
- 20 sampling-clock ticks in case of
single-channel mode.
:AWG
:TDELay <task-trigger delay> Set the time-delay of the task-
0to 10s trigger from the selected AWG
channel to the digitizer.
:PRETrigger <pre-trigger length in 0 Set the position of the trigger inside
samples> the frame, or in other words, how
many samples that arrive before the
trigger that starts the frame, should
be saved in the frame. Zero means
no pre-trigger.
:DATA
:TYPE FRAMes | HEADers | BOTH If reading frames with headers, then
each frame is followed by its header.
:SELect ALL | FRAMes | CHUNk ALL Set what should be read:
ALL - All frames.
FRAMes — One or more frames.
CHUNk — Chunk of data from
specified frame (the :TYPE is ignored
in this case).
:FRAMes <1st-frame>,<num-frames> | 1,1 Which frames to transfer.

Confidential | 46

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Keyword Parameter Form 'Default | Notes
:CHUNK? <frame-no>,<offset in 1,0,-1 Acquire a data-chunk from the
samples>,<read size in specified frame of the selected
samples> channel.

READ? Acquire the selected frames from
the selected channel

:SIZE? The size in bytes of the data that
was selected for read.

:FNAMe #t<header><file-path as Set the file-path for the :STORe

binary data> command

:STORe <offset> Store the specified data from the

captured memory of the selected
channel of the digitizer in the
specified offset of the predefined file
(no query).

:FORMat Ul6 | F32 | F64 ule The format of the data that will be
sent to the control PC.

U16 — Each 12-bits sample is
contained in an uint16 (LSB is
marker if marker-mode is enabled).
F32 — Each sample is converted to
32-bit floating-point value - marker
is lost. Future Release.

F64 — Each sample is converted to
64-bit floating-point value - marker
is lost. Future Release.

:YINCr?

Future Release

:YOFFset?

Future Release
XINCr?
Future Release
:XOFFset?
Future Release
:LOOPback

[:STATe {OFF|ON} OFF Enable disable loopback state for
the active channel.

:DELay <delay> 0 Set the time delay between the
digitizer channel and the
corresponding loopback generator
channel. Values are from 8 to 2047,
where each value corresponds to
16*DAC_SCLK_Period

:SYNC Use this command to initiate a sync
trigger to synchronize all loopback
channels.

Confidential | 47

@TABOR‘ ELECTRONICS

Keyword
:IQRotation

Proteus Programming Manual

Parameter Form
<scale>,<phase>

1,0

Rev. 1.4

'Default | Notes

Use this command to set the scale
and phase of the IQ rotation added
to the output signal of the active
generator channel. Scale can have
values between 0 to 3, and phase
can have values between 0 to 360.

:OVERflow?

Query if the configured operation
resulted in an overflow and as a
result the signal was clipped.
Response is 1 if signal was clipped or
0 if not clipped.

:PULSe

[:DEFine

{<INTernal | EXTernal>,
<FIXed | GATed>,
<window_width>}

12.5ns to 15s

EXT
FIX
0.1s

Define pulse counter trigger source:
INTernal — Internal trigger-source
EXTernal — External trigger-source
Define pulse-counter trigger
parameters:

FIXed — Fixed window for the
counter.

GATed — Window type
window-width — Time width of the
counter in seconds.

:COUNt?

Response: <counter 1>,<counter 2>

2.9

DSP Commands

Refer to section 11 Digital Signal Processing Commands, page 163 for details.

Keyword
:DSP

Table 2-9 DSP Group Commands

Parameter Form

Default

Notes

:STORe

DIRect | DSP | FFTOut

DIR

Select the data that will be
stored .

Note that the available
options are dependent on
the DDC:MODE selected in
the digitizer command
section.

:IQDemod

:SELect

DBUG | 1Q4 | 1Q5 | 106 | 1Q7
| 1Q8 | 1Q9 | 1Q10 | 1Q11 |
1Q12 | 1Q13

DBUG

Set which 1Q pair to
configure. DSP1
corresponds to 1Q4 up to
DSP10 which corresponds
to 1Q13.

:KERnel

Range 10240 samples, each
sample is 12 bit signed FIX
12_11 (11 bit for
fractional), real and

Confidential | 48

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

imaginary take values
between -1 to 1.

:COEFficient

<sample-number>,<real>,
<imaginary>

Write the real and
imaginary parts of the
specified sample in the
kernel of the selected IQ
pair.

:DATA

#<binary-header><binary
block>

Write or read the kernel
data, 10240 samples, 12 bit
for real and 12 bit for
imaginary in 4 bytes.

:FIR

Refers to the complex and
Real FIR blocks data path.

:SELect

11]Q1|12|Q2|DBUGI|DBUGQ

1

Select which FIR block to
configure. When mode is
Complex the complex data
path 1Q blocks are
operational (11, 12, Q1, Q2)
and in REAL mode the
DBUG 1Q blocks are
operational (DBUGI,
DBUGQ)

:BYPass

OFF| ON| 0] 1

ON

Set whether to bypass the
FIR block in complex mode.

:LENGth?

Query the number of taps.

:COEFficient

<tap-number>,<the value of
the specified tap>

Set the tap coefficient
value by sending the index
value of the desired
coefficient and its new
value. Value is specified
between -1 to 1 (FIX

24 23).The FIR has 51
taps. Query returns the
value of the coefficient
specified by the index.

:DATA

#t<header><binary_block>]

Write or read the taps of
FIR as binary data, each tap
is FIX 24_23

FFT

Set whether data is passed
through FFT or not. When
FFT is ON it is saved to the
DDR, frame size in digitizer
must be set to 2400
samples. FFT size is
constant at 1024.

Q1 | 102 | DBUG

Q1

Select the input of the FFT.
In case of REAL mode it is
DBUG. In case of DIGitizer
COMPIex mode it is 1Q1,

Confidential | 49

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

which is sourced at the ADC
channel 1 or IQ2, which is
sourced at ADC channel 2.
When :DDC:BIND is set to
ON then both IQ pairs are
sourced from channel 1.

:MATH
:OPERation MI1 | MQ1 | MI2 | MQ2 | MI1,1,0 Set the scale and offset of

MI3 | MQ3 |[MI4 |[MQ4 | MI5 the specified affine

[MQ5 | MI6 [MQ6 | MI7 | transformation in the math

MQ7 | MI8|MQS8 | MI9 |MQ9 block for the selected

| MI10 |MQ10 parameter. Scale value can

,<SCALe>,<OFFSet> be between -64 to 63,
offset value between -8192
to 8191. MIX or MQX
corresponds to the
appropriate DSPIX and
DSPQX.

:CLIP? Query if the configured
operation resulted in an
overflow and as a result the
signal was clipped.
Response is 1 if the signal
was clipped or 0 if not
clipped.

:XCORrelation

:LENGth <N> 1024 Set the length of the cross
correlation in samples,
length can range from 1 to
1024 samples.

:SIGNal MI1 | MQ1 | MI2 | MQ2 | MI1 Set the two signals on

MI3 | MQ3 |MI4 |MQ4 | MI5 which to perform the cross
IMQ5 | MI6 [MQ6 | MI7 | correlation.
MQ7 | MI8|MQ8 | MI9 |MQ9
| MI10 |MQ10
:RAVG MI1 | MQ1 | MI2 | MQ2 | Set the window size (2"

MI3 | MQ3 |MI4 |MQ4 | MI5 where n=0,1...15) for the
[MQ5 | MI6 |[MQ6 | MI7 | rolling average calculation.
MQ7 | MI8|MQ8 | MI9 |MQ9
| MI10 [MQ10 | XC,<N>

:DECision When using decision

blocks,

1. Frame size in digitizer
must be larger than
decision frame size.

2. When in REAL mode
since kernel is limited to
1024 samples (after
decimation) then digitizer

Confidential | 50

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

frame size is limited to
1024 samples.

3. When in complex mode
there is no limit on digitizer
frame size however since
decision frame size is
limited to 1024 samples
only the first 1024 samples
of the digitizer will be used
for decision.

[:FEEDback]

:MAPping <awg channel number>,DEC1 Set the decision block that
| DEC2| DEC3 | DEC4 | DECS | affect the selected channel
DEC6 | DEC7 | DEC8 | DEC9 | of the generator. Channel
DEC10 | XC number can take the value
of up to the number of
generator channels.
:CONDition <awg-channel-number>, Associate state SN of the
S1|S2|S3|S4|S5]|S6]|S7 decision block with the
| S8,<segment number> specified segment of the
specified AWG channel
FRAMe <the frame-size for 1024 Set the frame size for the
calculation> calculation, range from 2 to
1024 samples.
:IQPath
:SElLect DSP1 | DSP2 | DSP3 | DSP4| DSP1 Set which input path to
DSP5| DSP6| DSP7| DSP8| configure.
DSP9| DSP10
:0UTPut THReshold |SVM THR Select the output of the
IQpath.
:THReshold
:LEVel <N> 0] Set the threshold level of
the decision block
(between -2723 and 2723 -
1)
:INPut Ia Select the input for the
threshold decision.
:LINE 1]2]3,<slope>, Set the slope and y
<y intercept> intercept of the line
equation (1, 2, 3) of the
selected 1Q Path. Slope
value from -256 to 255, y-
intercept value from -128
to 127.
CLIP? Query if the configured

operation resulted in an
overflow and as a result the
signal was clipped.

Confidential | 51

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Response is 1 if signal was
clipped or 0 if not clipped.

:XCORrellation

:THReshold <N> Set the threshold value of
the cross correlation
(signed 24 bit).

CLIP? Query if the configured

operation resulted in an
overflow and as a result
signal was clipped.
Response is 1 if signal was
clipped or 0 if not clipped.

2.10 System Commands

Refer to section 12 System Commands, page 182 for details.

Table 2-10 System Commands

Keyword Parameter Form Default Notes
:SYSTem
:LOG
[:VERBose fromOto 6 4 The logger verbose level (0:
minimal, 6: maximal)
:ERRor? Query for programming errors.
:INFormation
:CALibration? Query calibration date.
:MODel? Query the model-name
:SERial? Query the serial-number
:HARDware? Query hardware version.
:FPGA
:VERSion? Query the FPGA FW version.
:DATE? Query the FPGA FW build date
:SVN? Query the FPGA SVN.
:FIRMware
:VERSion? Query the control PC DLL version.
:DATE? Query the control PC DLL build
date.
:SVN? Query the control PC SVN
software version.
:DAC? Query the DAC mode. Returns MO

for 16-bit width and M1 for 8-bit
width.

Confidential | 52

@TABOR‘ ELECTRONICS

Proteus Programming Manual Rev. 1.4

:SLOT? Query the slot-number of the first
slot the instrument occupies in
the chassis.

:SCPI Query the SCPI version.

:VERSion]? Query the version of the set of
SCPI commands.

:REGisters Query the FPGA register values in

HTML format.
[:MEASure]

:TEMPerature? Query the temperature (°C).

:HTPeak? Query the highest temperature
recorded (°C).

:LTPeak? Query the lowest temperature
recorded (°C).

:VINTernal? Query the internal Vcc (V).

:VAUXiliary? Query the auxiliary Vcc (V).

:FILE
:CATalog? Query the file catalog.
:NAME #<header><binary-block> System file path-name passed as
a block of binary data.
:SIZE? Query the file size in bytes.
:DATA [<offset in bytes>,] 0 Download binary-data to the
#<header><binary block> specified offset in the file.
:DELete Delete the file (no query).

2.11 SCPI Error List

Refer to 12.2.1 Error list for a list of SCPI errors that are issued by the SCPI parser.

Confidential | 53

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

3 Instrument Commands

Commands that are listed in the table below, control parameters for the group and synchronize
two or more channels, as well as their relative offset and skew parameters. Factory defaults after
the *RST command that resets the generator to its default state are shown in the Default column.
The parameter range and low and high limits are listed where applicable.

Note: The command :INST CH1 / CH2 / ..CHx. The default parameter is CH1, which means that
commands that are sent to the Proteus affect channel 1 settings only. Select the INST CHx
parameter if you want to program the channel x parameters.

3.1 :INSTrument:ACTive[:SELect]{1...}(?)

Description

This command will set the active Proteus Module for future programming command sequences.
Subsequent commands affect the selected Proteus Module only.

Parameters

Range Type Default Description

1 ...until number of [Discrete 1 Select the addressed instrument (1 is the master
modules in the instrument).

chassis

Response

The Proteus unit will return 1... depending on the present active module setting.

Example
Command :INST:ACT 1
Query :INST:ACT?

3.2 :INSTrument:CHANnNel[:SELect]{1]2]..12}?)

Description

This command will set the active channel (for a given module) or device (for standalone devices)
for future programming command sequences. Subsequent commands affect the selected channel
only.

Parameters

Range Type Default Description

1to12 Discrete 1 Sets the active channel for programming.
Response

The Proteus unit will return 1 to 12 depending on the present active module setting.

Example
Command :INST:CHAN 1
Query : INST:CHAN?

Confidential | 54

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

3.3 :INSTrument:CHANnel:OFFSet{1]|2]..1024}(?)

Description
Use this command to set the delay between channels in units of samples.

Parameters

Range Type Default Description

0to 1024 Discrete 0 Set the coarse offset in samples between channels.
Response

The Proteus unit will return 0 to 1024 depending on the present active module setting.

Example
Command :INST:CHAN:OFFS 1
Query :INST:CHAN:OFFS?

3.4 :INSTrument:COUPle:SKEW<ch_skew>(?)

Description

This command sets or queries the skew between Partl (DAC1) and Part2 (DAC2) within the
Proteus unit.

Parameters

Name Range Type Default Description

<ch_skew> -2.5e-9 to Integer 0 Defines a time delay between DAC1 and DAC 2
2.5e-9 of the Proteus module with 5ps resolution

Response

The Proteus unit will return the present value of the offset setting in units of waveform points.

Example
Command :INST:COUP:SKEW 1.5e-9
Query :INST:COUP: SKEW?

3.5 :XINStrument:MODE(?)
Description
The mode of the instrument. It can be single, master or slave. Query only.

Response
The Proteus will return SING, MAST or SLAV depending on the present mode setting.

Example
Query :XINS :MODE?

Confidential | 55

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

3.6 :XINStrument:SYNChronize:ROLE(?)

The query will return the synchronization mode of the active instrument (query only). The role is set by the
system at power up and can be changed by the :FOLLowers command.

Response

The query will return the synchronization mode of the active instrument (query only).
e SINGle - Instrument is not part of a chain.
e LEADer - Instrument is the leader of the chain.

e FOLLower - Instrument is a follower in the chain.

Example
Query :XINS:SYNC:ROLE?

3.7 :XINStrument:SYNChronize:FOLLowers
<number_of_follower_instruments>(?)

Description

Make the n consecutive instruments synchronization followers of this instrument. If n=0 and the
instrument is a leader instrument, then the chain is disassembled.

Note: How to synchronize n multiple instruments
1. Allinstruments must have the same model ID.

2. Connect the REF out of the leader instrument to the REF in of the following
instrument and so on, thus creating a daisy chain.

3. Verify that the WDS “Tabor Instrumentation Service” is running on the
controlling PC.

4. To initialize the instrumentation synchronization send :XINST:SYNC:FOLL n
command to the leader instrument.

5. Only the leader instrument’s external trigger TRG1 is sent to all the followers.
All the other instrument triggers are not shared.

6. To stop the synchronization send :XINST:SYNC:FOLL O to the leader

instrument.
Parameters
Name Type Default |Description
<number_of_follower_instruments>|Integer 0 Make the n consecutive instruments
synchronization followers of this instrument.
Response

The Proteus will return number of follower instruments depending on the present type setting.

Example
Command :XINS:SYNC:FOLL 3

Confidential | 56

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Query :XINS:SYNC:FOLL"?

3.8 :XINStrument:SYNChronize:OFFSet
< inst_offset>(?)

Future Release

Description

When couple state is ON, this command sets or queries the offset between the start phase of the
selected slave instrument in reference to the master instrument.

Parameters

Name Range Type Default Description

<inst_offset> 0 to number [Numeric(int) |0 Defines a coarse phase offset between

of waveform multiple instruments. When offset is applied to
points one instrument it is always in reference to the
other instrument. For example, offsetting the
slave instrument by 1024 points and then
offsetting master instrument by 2048 points
will cause slave waveform to lag the master
waveform by 1024 points. Offset can be
programmed in increments of 8 sample clock
periods.

Response

The Proteus will return the present value of the coarse offset setting in units of waveform points
(SCLK periods).

Example
Command :XINS:SYNC:OFFS 8
Query :XINS:SYNC:OFFS?

3.9 :XINStrument:SYNChronize:SKEW< inst_skew>(?)

Future Release

Description

When couple state is ON, this command sets or queries the skew between the start phase of the
slave instrument in reference to the master instrument.

Parameters

Range Range Type Default Description

<inst_skew> -5e-9 to 5e-9 [Numeric 0 Defines a phase offset between two
instruments. When offset is applied to one
instrument it is always in reference to the
other instrument.

Response

The Proteus will return the present value of the skew setting in units of seconds.

Confidential | 57

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :XINS:SYNC:SKEW le-09
Query :XINS:SYNC:SKEW?

Confidential | 58

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

4 Run Mode Commands

The Run Mode Commands group is used to synchronize device actions with external or internal
events. The Proteus can operate in two basic modes: self-armed and armed.

Self-armed mode is the default option where waveforms are generated at the output connector,
immediately after the output function has been selected.

In armed mode, the Proteus requires an enable command or an external analog event to cause
the output to start generating waveforms and when already armed, a remote abort command will
cease the generation of the signal and the output will return to a known idle state. This mode is
very useful to control how and when the waveform will start and stop for systems that require
precise control of waveform timing respect real-world events.

Other commands in this group control the basic run modes of the waveform generator. The
available run modes are:

e CONTINUOUS — Waveforms are generated continuously at the output connector and
triggered and gated.

e CONDITIONAL — Waveforms are generated on conditional events, no matter if they are
generated internally from a built-in trigger generator or applied externally to the trigger
and event inputs.

Also use the commands in this group to control the sensitivity, the polarity and other conditions
of which external signals will affect the trigger and event inputs.

A built-in counter is available to control a precise number of cycles for applications requiring a
burst of waveforms that follows a trigger event.

Additional information on the run mode options and how the generator behaves under the
various run mode options is given in the following sections. Factory defaults after *RST are shown
in the default column. Parameter low and high limits are given where applicable. Use the
commands in below to set up the Proteus run mode and for setting up the input conditions for
the various trigger inputs.

4.1 :INITiate:CONTinuous[:STATe]{OFF|ON|0]|1}(?)

Description

This command defines the continuous run mode of the instrument. This command does not
activate the trigger sources, which must be set up and activated using additional commands.

The figure below depicts a standard trigger with a minimum instrument delay (additional user
defined delay can be added). The output with Loops = 6 (the segment is played six times) will
cause Trigger Event #3 to be ignored.

Confidential | 59

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Standard Trigger

A

Trigger Event #1 Trigger Event #2 | Trigger Event #3 Trigger Event #4
Trigger
Event
—>
Trigger Delay Trigger Delay Trigger Delay Trigger Delay
Qutput —r — — -
(Loops = 1) /\ /\ /\

w25 AAAAAA AAAAAA AAAADD
VATATAVAAVERERVATRVATATA! VYT

v

Figure 4-1 Standard Trigger

Parameters

Range Type Default Description

0-1 Discrete 1 0 — Disables the continuous operation and forces the
triggered run mode.
Trigger signal is applied to the trigger input only and
output waveforms will be generated only when the
trigger signal is valid and true. The slope and level of
the trigger input are programmable.
1 —Selects the continuous run mode.

Response

The Proteus unit will return 1 or 0 depending on the current run mode setting.

Example
Command :INIT:CONT OFF
Query : INIT:CONT?

4.2 :TRIGger:COUPle[:STATe]{OFF|ON|0|1}(?)

Description

This command defines the trigger coupling between synchronized modules. When set to ON all
synchronized modules will receive the trigger from the master module trigger 1. Use this when
you would like all units to receive the trigger from a common trigger input. For example, in a
Desktop or Benchtop multi-channel unit when the trigger couple is set to ON all channels will
receive the trigger from TRIG1.

Confidential | 60

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Range Type Default Description

0-1 Discrete 0 0 — Trigger coupling between synchronized modules is
off.
1 — Activates trigger coupling for all the synchronized
modules.

Response

The Proteus unit will return 1 or 0 depending on the current run mode setting.

Example
Command : TRIG:COUP OFF
Query : TRIG:COUP?

4.3 :TRIGger:SOURce:ENABle{NONE|TRG1|TRG2|TRG3|
TRG4|TRG5 | TRG6 | INTernal
| CPU|FBTRg|HWControl}(?)

Description

Use this command to set or query the source of the trigger enable signal. The trigger inputs in the
front panel are associated to a specific output channel depending on the Proteus model. Refer to
the table “Effected Channels” below.

Parameters

Name Type Default Description

<NONE> Discrete NONE No source of the enable signal.
<TRG1> Discrete Trigger input 1

<TRG2> Discrete Trigger input 2

<TRG3> Discrete Trigger input 3

<TRG4> Discrete Trigger input 4

<TRG5> Discrete Trigger input 5

<TRG6> Discrete Trigger input 6

<INTernal> Discrete Internal trigger

<CPU> Discrete Bus

<FBTgR> Discrete Feedback trigger. Relevant for AWT digitizer option.
<HWControl> Discrete Dynamic jump connector.

Effected Channels

Trigger Model Effected Channels
TRG1 All All channels

TRG2 All All channels

TRG3 P1288D CH5 -CH8

Confidential | 61

@TABOR ELECTRONICS

P12812D

Proteus Programming Manual

P2588D

P25812D

P1288B

P12812B

P2588B

P25812B

Rev. 1.4

P9084D

P9086D

CH3 - CH4

P9084B

P9086B

TRG4

P1288D

P12812D

P2588D

P25812D

CH5 -CH8

P1288B

P12812B

P2588B

P25812B

P9084D

P9086D

P9084B

CH3 - CH6

P9086B

TRG5

P12812D

P25812D

P12812B

CH9-CH12

P25812B

P9086D

P9086B

CH5 -CH6

TRG6

P12812D

P25812D

P12812B

CH9-CH12

P25812B

P9086D

P9086B

CH5 -CH6

Confidential | 62

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response

The Proteus will return NONE, CPU, HW, TRG1, TRG2, TRG3, TRG4, TRG5, TRG6, FBTR or INT
depending on the present source selection.

Example
Command :TRIG:SOUR:ENAB CPU
Query :TRIG:SOUR:ENAB?

4.4 :TRIGger:SOURce:DISable{NONE|TRG1|TRG2|TRG3
| TRG4|TRG5|TRG6 | INTernal
| CPU|FBTRg | HWControl}(?)

Description

Use this command to set or query the source of the trigger disable (abort) signal.

Parameters

Name Type Default Description

<NONE> Discrete NONE No source of the disable signal.
<TRG1> Discrete Trigger input 1

<TRG2> Discrete Trigger input 2

<TRG3> Discrete Trigger input 3

<TRG4> Discrete Trigger input 4

<TRG5> Discrete Trigger input 5

<TRG6> Discrete Trigger input 6

<INTernal> Discrete Internal trigger

<CPU> Discrete Bus

<FBTgR> Discrete Feedback trigger. Relevant for AWT digitizer option.
<HWControl> Discrete Dynamic jump connector

Effected Channels

Trigger Model Effected Channels
TRG1 All All channels

TRG2 All All channels

P1288D

P12812D

P2588D
TRG3 CH5 -CH8
P25812D

P1288B

P12812B

Confidential | 63

@maan ELECTRONICS Proteus Programming Manual Rev.1.4

P2588B
P25812B
P9084D

P9086D
CH3 - CH4

P9084B
P9086B
P1288D

P12812D

P2588D
P25812D
P1288B

CH5 -CH8

TRGA P12812B

P2588B
P25812B
P9084D
P9086D
P9084B
P9086B

CH3 - CH6

P12812D

P25812D
P12812B
P25812B
P9086D

CH9-CH12

TRG5

CH5 -CH6
P9086B

P12812D

P25812D
P12812B
P25812B
P9086D

CH9-CH12

TRG6

CH5 -CH6

P9086B

Response

The Proteus will return NONE, CPU, HW, TRG1, TRG2, TRG3, TRG4, TRG5, TRG6, FBTR or INT
depending on the present source selection.

Confidential | 64

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :TRIG:SOUR:DIS CPU
Query :TRIG:SOUR:DIS?

4.5 :TRIGger[:ACTIVE]:SELect{TRG1|TRG2|TRG3|TRG4|
TRGS5|TRG6 | INTernal}(?)

Description
Select the trigger source as the target for the next related SCPI commands setup.

Parameters

Name Type Default Description
TRG1 Discrete TRG1 Trigger input 1
TRG2 Discrete Trigger input 2
<TRG3> Discrete Trigger input 3
<TRG4> Discrete Trigger input 4
<TRG5> Discrete Trigger input 5
<TRG6> Discrete Trigger input 6
INTernal Discrete Internal trigger

Effected Channels

Trigger Model Effected Channels

TRG1 All All channels

TRG2 All All channels

P1288D

P12812D
P2588D
P25812D

CH5 -CH8
P1288B

P12812B
P2588B

TRG3

P25812B

P9084D

P9086D
CH3 - CH4

P9084B
P9086B

P1288D

TRG4 CH5 -CH8
P12812D

Confidential | 65

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

P2588D
P25812D
P1288B

P12812B

P2588B
P25812B
P9084D
P9086D
P9084B
P9086B

CH3 - CH6

P12812D

P25812D
P12812B
P25812B
P9086D

CH9-CH12

TRG5

CH5 -CH6
P9086B

P12812D

P25812D
P12812B
P25812B
P9086D

CH9-CH12

TRG6

CH5 -CH6

P9086B

Response

The Proteus will return TRG1, TRG2, TRG3, TRG4, TRG5, TRG6, or INT depending on the present
source selection.

Example
Command :TRIG:ACTIVE:SEL TRG1
Query :TRIG:ACTIVE:SEL?

4.6 :TRIGger[:ACTIVE]:STATe{OFF|ON|0|1}(?)

Description

Enable / disable the selected external trigger (as designated by the :TRG:SEL command)). Enabling
the trigger source is mandatory as just selecting a given trigger source will not activate the
selected source.

Parameters
Range Type Default Description
0-1 Discrete 0 Enable or disable the selected trigger.

Confidential | 66

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return 1 if the selected trigger is ON, or O if the trigger is OFF.

Example
Command :TRIG:STAT ON
Query :TRIG:STAT?

4.7 :TRIGger:CPU:MODE{LOCAL|GLOBAL}(?)

Description

When using the CPU trigger the user can select between LOCAL mode where only the active
channel receives the CPU trigger or GLOBAL where all channels receive the same CPU trigger
simultaneously.

Parameters

Range Type Default Description

LOCAL Discrete GLOBAL The active channel receives the CPU trigger.

GLOBAL Discrete All channels receive the same CPU trigger
simultaneously.

Response

The Proteus will return the CPU mode, LOCAL or GLOBAL.

Example
Command :TRIG:CPU:MODE LOCAL
Query :TRIG:CPU:MODE?

4.8 :TRIGger:GATE[:STATe]{OFF|ON|1]|0}?)

Description

Enable or disable Gated-Mode of the selected external trigger (channel dependent). (Internal
trigger has no gate mode, so its gate mode is only OFF.)

The figure below depicts that the gating signal will for “Jump Eventually” initiate the playing of
the whole segment, while for “Jump Immediate” only play the segment that fits in the Gating
Signal time length.

Confidential | 67

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4
Gate Trigger
F'y
Gating
Signal
Trigger Delay, Trigger Delay Trigger Delay . Trigger Delay
e R AR I s T
Eventuallyohbﬂjgzljet /\ /\ : /\ [\ /\ /\ [\ [\ [\ >
AT TV NAAATAY

Qutput
Immediate Mode

AN
IRYY

Figure 4-2 Gate Trigger

v

AANNS
VVVY

Parameters

Range Type Default Description

0-1 Discrete 0 0 — Disable the gated run mode.
1 - Enable the gated run mode. The gated run mode
should only be selected if continuous run mode is off
otherwise it has no effect on the current run mode.
Gating signal is applied to the trigger input only and
output waveforms will be generated only when the
gate signal is valid and true. The slope and level of the
gating entry are programmable.

Response

The Proteus will return 1 if the gated mode is enabled and 0 if the gated mode is disabled.

Example
Command

Query

4.9

Description

:TRIG:GATE?

:TRIG:GATE ON

:TRIGger:LEVel<level>(?)

Use this command to set or query the trigger level setting for a given trigger input selected
through the :TRIG:SEL command and for the channel defined by the :INST command. This
command is effective only when the Proteus unit is programmed to operate in triggered run mode
(:INIT:CONT 0). The external Trigger Source must be activated using the :TRIG:STAT ON command
to actually produce a trigger event for the associated channel/s.

Parameters
Name Range Type Default Description
<level> -5to 5, 0.1V Numeric(float) | 0.0 Programs the trigger level in volt.
resolution

Confidential | 68

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return the present trigger level value.

Example
Command :TRIG:LEV 1.2
Query :TRIG:LEV?

4.10 :TRIGger:COUNt<cycles>(?)

Description

Use this command to set or query the cycles counter setting for a given trigger input selected
through the :TRIG:SEL command and for the channel defined by the :INST command. This
command is effective only when the Proteus unit is programmed to operate in triggered run mode
(INIT:CONT 0). The command defines the number of times the current segment will be played for
a given trigger signal.

Parameters

Name Range Type Default Description

<cycles> 0-1M Integer 1 Programs the burst count. Following a
valid trigger signal, the Proteus generates
a pre-programmed number of waveform
cycles and then resumes an idle state. The
counted burst can be initiated using one
of the following:

e Front panel Man Trigger push button
e Remote command such as *TRG

e Atransition at any of the trigger input
connectors.

Response

Returns the present cycle count value.

Example
Command :TRIG:COUN 1000
Query : TRIG:COUN?

4.11 :TRIGger:WIDTh<width>(?)

Description

Use this command to set or query the trigger width value for a given trigger input selected
through the :TRIG:SEL command and a given channel selected by the :INST command. Trigger
signal having a pulse width below the programmed settings will not trigger the unit. Width is
measured according to the threshold level set up by the :TRIG:LEV command and it refers to the
pulse duration over the threshold level.

The figure below depicts that for “Ext. Trigger #3” the trigger is shorter than the “Min. Width” and
it will not trigger in the “Output Trigger Width > 0”.

Confidential | 69

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

WidthTrigger
A
Ext. Trigger #1 Ext. Trigger #2 Ext. Trigger #3 Ext. Trigger #4
Trigger i -
Event Min, T Min “Win. "
Width Width Width Width N
Trigger Delay Trigger Delay Trigger Delay Trigger Delay

Qutput —]
(Width = 0) /\ /\ :/\
Trigger Delay 'Trigger Delay Trigger Delay
> 4—? -~
Output
(Trigger Width > 0) {\ i /\

Figure 4-3 Trigger Width

Parameters
Name Range Type Default Description
<width> 0, from 10e-9 Numeric 0 The pulse-detect width of the external
to 2s, 2ns trigger, zero means edge (channel
resolution dependent).
Response

The Proteus will return the present value in units of seconds.

Example
Command :TRIG:WIDT le-03
Query :TRIG:WIDT?

4.12 :TRIGger:SLOPe {POSitive | NEGative}(?)

Description

Use this command to define or query the valid slope for the Proteus trigger input selected through
the :TRIG:SEL command and a given channel selected by the :INST command. You can choose
between positive (up) and negative (down) independently for each trigger input.

Parameters
Name Type Default Description
<POSITIVE> Discrete POS Selects the positive (up) slope for trigger.
<NEGATIVE> Discrete Selects the negative (down) slope for trigger.
Response

The Proteus will return the current selection for the valid trigger slope for a given trigger input.

Confidential | 70

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :TRIG:SLOP NEG
Query :TRIG:SLOP?

4.13 :TRIGger:TIMer<time>(?)

Description

Use this command to set or query the period of the internal timed trigger generator. This value is
associated with the internal trigger run mode only and has no effect on other trigger modes. The
internal trigger generator is a free-running oscillator, asynchronous with the frequency of the
output waveform. The timer intervals are measured from waveform start to waveform start.

Parameters
Name Range Type Default Description
<time> 200e-9 to Numeric 1.5e-5 Programs the internal timed trigger
2.0 generator period in units of seconds.
Response

The Proteus will return the present internal timed trigger period value in units of seconds.

Example
Command :TRIG:TIM 100e-6
Query :TRIG: TIM?

4.14 :TRIGger:IMMediate

Description

Use this command to trigger the Proteus unit from a remote computer. You may also use the IEEE-
STD-488.2 *TRG common command that will have the same effect. This command will affect the
Proteus only after you program the instrument to operate in triggered run mode and select the
trigger source BUS option. Note that commands that start with TRIG affect the conditions for the
trigger input only.

Example

Command :TRIG: IMM

4.15 :TRIGger:MODE{EVENtually |IMMediate}(?)

Description

Use this command to define or query the DISABLE (ABORT) trigger mode. In the EVENtually mode,
the trigger aborts the generation of the selected segment as soon as the current loop is
completed. In the IMMediate mode, the generation of the selected segment is aborted as soon
as possible without waiting for the end of the current loop.

Parameters
Name Type Default Description
<EVENtually> Discrete EVEN Selects the Eventually disable trigger mode.

Confidential | 71

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

‘ <IMMediately> Discrete Selects the Immediately disable trigger mode.

Response
The Proteus will return EVEN or IMM, depending on the current disable trigger mode setting.

Example
Command :TRIG:MODE IMM
Query :TRIG:MODE?

4.16 :TRIGger:LTJ[:STATe]{OFF|ON|0|1}(?)

Description

Use this command to set or query the status of the low-jitter trigger functionality for a given
trigger input selected through the :TRIG:SEL command and a given channel selected by the :INST
command.

Parameters
Name Type Default Description
0-1 Discrete 1 0 — Low-Jitter Trigger deactivated.
1 — Activates the Low-litter Trigger functionality.
Response

The Proteus will return 0 or 1 depending on the current low-jitter trigger functionality status.

Example
Command :TRIG:LTJ ON
Query :TRIG:LTJ?

4.17 :TRIGger:IDLE:[TYPE]{ DC | FIRSt | CURRent }(?)

Description

Use this command to define or query the trigger mode. In normal mode, the first trigger activates
the output and consecutive triggers are ignored for the duration of the output waveform. In
override mode, the first trigger activates the output and consecutive triggers restart the output
waveform, regardless of if the current waveform has been completed or not.

Parameters
Name Type Default Description
<DC> Discrete DC Selects a DC level.
<FIRSt> Discrete Selects the first sample of the waveform.
< CURRent > Discrete Keeps playing the current segment.
Response

The Proteus will return FIRS, DC or CURR depending on the current idle mode setting.

Confidential | 72

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :TRIG:IDLE FIRS
Query :TRIG:IDLE?

4.18 :TRIGger:IDLE:LEVel<level>(?)

Description

Use this command to set or query the DC level for the idle state when the mode has been set to
DC with the :TRIG:IDLE DC command.

Parameters
Name Range Type Default Description
<level> Oto Numeric 32,768/128 | Programs the DC level during the idle
65,535/256 state in DAC quantization levels.
Response

The Proteus will return the present DC level set for the idle state.

Example
Command :TRIG:IDLE:LEV 12000
Query :TRIG:IDLE:LEV?

4.19 :TRIGger:PULSe[:STATe]{ OFF|ON|0|1}(?)

Future Release

Description

Use this command to set or query the status of the pulse trigger for a given trigger input selected
through the :TRIGger:ACTive:SELect command and a given channel selected by the :INST:CHAN
command.

Parameters

Range Type Default Description

0-1 Discrete 0 Turns the pulse trigger on and off.
Response

The Proteus will return 0 or 1 depending on the present pulse trigger state.

Example
Command :TRIG:PULS ON
Query : TRIG: PULS?

Confidential | 73

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

4.20 :TRIGger:PULSe:COUNt< count>(?)

Future Release

Description

Use this command to query the number of pulses for pulse trigger mode when it has been set
activated with the :TRIGger:PULSe[:STATe] on command.

Parameters
Name Range Type Default Description
<count> 1to Numeric 0 Counts the number of trigger pulses
4,284,967,295 received. Maximum rate is half of the
sample rate.
Response

The Proteus will return the present number of pulses for pulse trigger.

Example
Query :TRIG: PULS : COUN?

4.21 :TRIGger:PULSe:COUNt:RESet

Future Release

Description

Use this command to re-start the pulse counter associated to the pulse trigger when the trigger
mode when it has been set activated with the :TRIG:PULS on command.

Example
Command :TRIG: PULS :COUN:RES

4.22 :TRIGger:DELay<delay>(?)

Description

Use this command to set or query the period of time between a valid trigger event and the action
triggered by it.

Parameters

Name Range Type Default Description

<delay> external-trigger: | Numeric 0 Programs the internal delay timer to
0 to at least delay the action triggered by a valid
6.55us. external trigger event.

Resolution:

DAC mode MO:
8SCLKs

DAC mode M1:
32SCLKs

internal-trigger:
only 0

Confidential | 74

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return the present internal trigger delay value in units of seconds.

Example
Command :TRIG:DEL 10e-06
Query :TRIG:DEL?

4.23 :TRIGger:HOLDoff< holdoff>(?)

Future Release

Description

Set the holdoff time for the selected external-trigger of the selected channel. Incoming trigger will
be ignored during the holdoff period.

The figure below depicts that “Ext. Trigger #3” will be ignored and the segment will not be played
when “Output Trigger Holdoff > 0” because the time distance to “Ext. Trigger #2” is shorter than
the “Holdoff Time”.

Trigger Holdoff
A
Ext. Trigger #1 Ext. Trigger #2 Ext. Trigger #3 Ext. Trigger #4
Trigger i
Event
Trigger Delay Trigger Delay Trigger Delay Trigger Delay
: — — -

(Trigger Holdgﬁuipg; H[\ [\ /\ /\
Y A v

v

Holdoff Time Holdoff Time Holdoff Time
Qutput
(Trigger Holdoff > Q) /\ >
Figure 4-4 Trigger Holdoff
Parameters
Name Range Type Default Description
< holdoff > external-trigger: | Numeric 100ns Set the holdoff of the selected external
from 0 to TBD. external trigger of the selected channel.
Internal-trigger: trigger
only 0 (no
holdoff
Response

The Proteus will return the present external trigger holdoff value in units of seconds.

Confidential | 75

@meeq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :TRIG:HOLD 10e-6
Query :TRIG:HOLD?

Confidential | 76

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

5 Analog Output Control Commands

The Analog Output Control Commands group is used for programming the characteristics of the
output waveform. Notice that there are two main subsystems that control output functions:
OUTPut and SOURce. The output subsystem commands control parameters that are related
directly to the output terminals (main and sync outputs) and the source subsystem commands
program parameters that control waveform shape, frequency and level.

The Proteus has several output modules to choose from when ordering the instrument. There is
an option of a DC-coupled, single-ended or differential output with variable amplitude, and a
optional direct DAC differential output, AC-coupled. The various modules differ in how the
outputs behave in time and frequency domains. The DC module offers 4.5 GHz bandwidth with
up to 1.2 Vpp amplitude while the AC-coupled, direct-DAC offers a 9 GHz analog bandwidth with
a 550 mVpp amplitude.

Other commands in this group control the SYNC parameters: type, position and width. Also use
the commands in this group to control the shape of the output waveform, its frequency, its output
level (or power) and the source of the clock reference.

Factory defaults after *RST are shown in the default column. Parameter low and high limits are
given where applicable. Use the following commands to set up the Proteus output waveforms,
and their associated characteristics.

5.1 :OUTPut[:STATe]{ OFF | ON | 0 | 1 }(?)

Description

This command will set or query the output state of the channel specified by the previous
:INSTrument:CHANnel:SELect command. Note that for safety, the outputs always default to off,
even if the last instrument setting before power down was on. Also note that the offsetting leaves
the output connector connected to the amplifier path but no signal is being generated while in
the off state.

Parameters

Range Type Default Description

0-1 Discrete 0 Sets the output to on or off.
Response

The Proteus will return 1 if the output is on, or 0 if the output is off.

Example
Command :OUTP ON
Query :OUTP?

5.2 [:SOURce]:MODE{ DIRect |NCO | DUC }?)

Description

This command will set or query the arbitrary generation mode of the channel specified by the
previous :INSTrument:CHANnel:SELect command. There three modes: Direct, NCO, and DUC. The
direct mode uses one sample per sampling period and samples are applied directly to the DAC.

Confidential | 77

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

The NCO mode internally generated a sine wave with the frequency and phase set by the
:SOUR:CFR and :SOUR:CPH respectively. The IQ mode uses two samples (I, or in-Phase, and Q, or
qguadrature) per sampling period in order to feed the associated quadrature modulator in the DUC
(Digital Up-Converter) for each channel. The quadrature modulator uses two NCOs (Numerically
Controlled Oscillator) whose operating frequency may be set using the :SOUR:CFR command.

Parameters

Name Type Default Description

DIRect Discrete DIR Selects direct mode for waveform generation.

NCO Discrete Selects the NCO mode for the internal sinewave
waveform generation.

DUC Discrete Selects the 1Q (quadrature modulation) model in the
internal DUC for waveform generation.

Response

The Proteus will return DIR if the generation mode is direct, DUC if the generation mode is IQ, and
NCO if the generation mode is NCO.

Example
Command :MODE NCO
Query :MODE?

5.3 [:SOURce]:PTRepeat{ X1 | X2 | X4 | X8 }(?)

Description

Set the point repeat factor for the channel previously selected using the
:INSTrument:CHANnNel:SELect command. The Point Repeat factor enables the user to configure
the unit so that each sample point that is sent to the FPGA is repeated by the point repeat factor.
This essentially enables the user to lower the SCLK below the minimum 1GS/s limit. e.g. if point
repeat is set to x4, each sample is sent 4 times to the DAC, and thus if the SCLK is 1GS/s the output
appears as if the SCLK is 250MS/s. Note that this can be used only with segments that are normal
(not fast).

Parameters

Name Type Default Description

X1 Discrete X1 Point repeat factor x1.
X2 Discrete Point repeat factor x2.
X4 Discrete Point repeat factor x4.
X8 Discrete Point repeat factor x8.
Response

The Proteus will return X1, X2, X4, or X8 depending on the active point repeat factor.

Example
Command :PTR X8
Query : PTR?

Confidential | 78

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

5.4 [:SOURce]:INTerpolation{ NONE|X2| X4 |X8}(?)

Description

This command will set or query the interpolation factor of the channel specified by the previous
:INSTrument:CHANnel:SELect command. The AWG will interpolate in real-time 2, 4, or 8 samples
for each actual sample stored in the waveform memory. Final sampling rate will be multiplied by
the same factor respect the sampling rate of the samples in the waveform memory. Sampling rate
for the stored data is the one set for the DAC divided by the interpolation factor (2, 4, or 8).

Parameters

Name Type Default Description

NONE Discrete NONE No interpolation.

X2 Discrete Interpolation factor x2.
X4 Discrete Interpolation factor x4.
X8 Discrete Interpolation factor x8.
Response

The Proteus will return NONE, X2, X4, or X8 depending on the active interpolation factor.

Example
Command :INT X8
Query :INT?

5.5 [:SOURce]:NCO:MODE{ SINGle | DUAL}(?)

Description

Set the NCO mode. In dual mode, the user can control two NCOs (1 or 2) per channel.

Parameters

Name Type Default Description

SINGle Discrete SING Set the NCO mode to single mode.
DUAL Discrete Set the NCO mode to double mode.
Response

The Proteus will return SING or DUAL depending on the NCO mode.

Example
Command :NCO:MODE DUAL
Query :NCO : MODE?

5.6 [:SOURce]:NCO:CFRequency<1|2> <carr_freq>(?)

Description

Use this command to set or query the carrier frequency for the selected NCO <1 | 2> of the selected
channel. It will be effective when the waveform generation mode is set to DIR, NCO, or DUC, refer
to 5.2 [:SOURce]:MODE{ DIRect |[NCO | DUC }(?), page 77.

Confidential | 79

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Range Type Default Description

< carr_freq > 0 Hz to sclk Numeric 4e+08 Will set the carrier frequency in Hz, while
generation is carried out in the 1Q or NCO
modes.

Response

The Proteus unit will return the present carrier frequency value. The returned value will be in
standard scientific format (for example: 1 GHz would be returned as 1e9 — positive numbers are
unsigned).

Example
Command :NCO:CFR1 5.0e9
Query :NCO:CFR1?

5.7 [:SOURce]: NCO:PHASe<1|2> {<phase in
degrees>}(?)

Description

Use this command to set or query the phase (in degrees) for the selected NCO <1|2> of the
selected channel.

Parameters

Name Range Type Default Description

<phase in 0to 360 Numeric 0 Will set the NCO phase (in degrees) of the
degrees> selected channel.

Response

The Proteus unit will return the NCO phase.

Example
Command :NCO:PHAS1 5
Query :NCO:PHAS1"?

5.8 [:SOURce]:NCO:SIXDb<1|2>{ OFF|ON|0|1}(?)

Description
This command will set or query the 6dB gain for the selected NCO<1]|2>.

Parameters

Name Type Default Description

0-1 Discrete 0 Sets the 6dB gain on and off.
Response

The Proteus will return 1 if the 6dB gain is on, or 0 if the 6dB gain is off.

Confidential | 80

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :NCO:SIXD1 ON
Query :NCO:SIXD1?

5.9 [:SOURce]:IQModulation
{NONE |HALF | ONE | TWO}(?)

Description

Set the 1Q modulation type. It is shared by all channels in the module and by all modules in a
synchronized master-slaves chain. The IQ modulation type are classified by the number of 1Q pairs
per channel.

IQ modulation requires one or more complex waveform, s(n) = I(n) + j x Q(n), to work. The
different modes express the complex waveforms in a different way according to the internal
processing performed over them.

Confidential | 81

@TABOR ELECTRONICS

a) NCO Mode

b) ONE Mode

c) TWO Mode

c) HALF Mode

Proteus Programming Manual

1
—»|INTERPOLATOR

—»| X1/X2/X4/X8
Q1
Waveform
Memory
12
—INTERPOLATOR
—»] X1/X2/X4/X8
Qz
7 ~\ NCO1
i
—> INTERPOLATOR
? X1/X2/X4/X8
Waveform
Memory
12
—"INTERPOLATOR
—| X1/X2/X4/X8
Q2
|
7) ~ NCO1
§]
—|INTERPOLATOR
——| X1/X2/X4/X8
Q1
Waveform
Memory NCO2
12
INTERPOLATOR
X1/X2/X4/X8
\. J S
4 3 N
[}
—>|INTERPOLATOR
| X1/X2/X4IX8
o
Waveform
Memory
12
—>|{INTERPOLATOR
—> X1/X2/X4/X8 |—>'
Q2
.~
4 N
1]
—»|{INTERPOLATOR|
—| X1/X2/X4/X8
Q1
Waveform
Memory
12
[INTERPOLATOR
—| X1/X2/X4/X8
Q2
~—

Figure 5-1 1Q Modulation Modes Block Diagram

Confidential | 82

Rev. 1.4

Channel 2N -1

RF
Signal

Channel 2N

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

The HALF mode works using two channels to process the | and Q waveform separately. However,
the second channel output samples are routed internally to an adder combining them in a single
sample stream fed to the DAC associated to the first channel. As a result, the number of active
output channels is reduced by half. The advantage of this mode is doubling the sampling rate of
the input waveform, thus increasing modulation bandwidth in the same proportion. Channels
associated to the same waveform memory are the ones to be combined in the HALF mode, so the
first, active channel, associated to the | waveform, will be always the odd numbered channel #n,
while the second channel, associated to the Q waveform, will be channel # n+1, and the DAC
associated to this channel will not be generating any signal while in this mode. | and Q waveforms
must be downloaded separately to the designated segments, segments must be assigned to each
one of the participating channels, the NCO for each channel must be set to the same frequency
and phase separately as any regular waveform. Interpolation factors can be selected depending
on the sampling clock settings. The sampling rate for the baseband waveforms (before
interpolation), Fs/Interpolation, equal to the complex waveform sample rate, must be always
lower or equal than 2.5GSa/s.

Q
Sample
Calculation

16-hit
Quantization

- [= o o o2
Q 1Q :Eocﬂﬁcaﬂ;od
A :] o o

Normalization Interleaving - w|® ﬁ %m w ﬁ % w6 3’: g

Y (1 a0 I]

a
Sample
Calculation

16-bit
Quantization

Figure 5-2 One-mode 1Q Modulation Data Formatting

The ONE mode feeds one IQ pair to each channel independently, so all channels can be active
simultaneously. In this case, as the complex IQ waveform is fed to the same channel, waveforms
will consist in a series of interleaved |, Q samples stored in the same waveform segment. Segment
length must be set to twice the number of complex samples, then. Interpolation factor can be
selected according to the sampling clock setting. The maximum sampling rate for the 1Q baseband
waveforms COMBINED is 2.5 GSa/s, so the maximum sampling rate for the complex waveform is
1.25 GSa/s.

The TWO mode uses both IQ modulators (and associated NCOs) for each channel. Although both
1Q pairs must be calculated to have the same number of samples and the same sample rate, they
can use any valid Carrier Frequency and the waveforms can be independently defined. As both 1Q
pairs will share the same channel, samples for both complex waveforms will be stored as double-
interleaved sequences in the waveform memory. This means that the segment length must be
four times the number of complex samples for one of the 1Q streams. The combined maximum
sample transfer rate from the segment must be equal or lower than 2.5 GSa/s, so 1.25GSa/s for
each 1Q pair. This means than each complex sample rate must be sampled at 612.5 MSa/s or less.
Data must be formatted in a particular way for the TWO mode. Although the final goal is
interleaving the | and Q samples for both pairs, the data must be properly formatted for the
waveform to work properly in the TWO mode. This is a step-by-step description of the waveform
data formatting process in the TWO mode:

Confidential | 83

@meeq ELECTRONICS Proteus Programming Manual Rev.1.4

e (Calculate, normalize and quantize to 16-bit unsigned integers the 11, Q1, 12, and Q2
waveforms.

e Split the unsigned 16-bit integers in two bytes (unsigned 8-bit integers), MSB and LSB.

e Take the MSBs and LSBs of each sample in each waveform and interleave them in the
sequence 11M, Q1M, Q2M, 12M, I1L, Q1L, Q2L, I12L.

e Download the formatted waveform data to the target segment.

Byte
Swapping

((4 4 ™
(4] g
16-hit Byte
Sample U 3
Calculation Quantization Swapping
| _ \
1iQz
Byte
Interleaving
' s p
Q2 5
B Quai:t-i::tion g St
Calculation wapping -
=gl o
. L | - y. Byte = o
(4 4 ~ Interleaving “@ @
a1 ’ l ,
16-bit Byte
Sample U >
Calculation Quantlzatmnb Swapping %
. _ _
Q12
Byte
Interleaving

12
Sample
Calculation

Waveforms to be used in the IQM (DUC) mode must be carefully normalized to avoid DAC clipping.
While | and Q waveform may use the full 16-bit range without clipping, the combined 1Q
modulated waveform can go beyond the DAC range as seen here:

16-bit
Quantization

Figure 5-3 Two-mode IQ Modulation Data Formatting

T

+12 wronG #[Q RIGHT

..........

F Y " Waorst Case
" S 10

s Worst Case
1.4142

ST

4
L 4
¥
v

Figure 5-4 DAC Clipping in IQM Mode

The solution to this issue is normalizing according to the module of the combined | and Q signal
(M =sqgrt(I*2 + Q*2)). Both the | and Q waveforms must be normalized using the same factor so
its module never goes beyond the DAC range. | and Q waveforms must be normalized using the
same value to keep the quadrature valance in the modulation although this may result in a non-

Confidential | 84

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

optimal individual normalization for the baseband IQ waveforms. In the TWO mode, two 1Q pairs
are combined with carriers at arbitrary frequencies. Both signals are combined by an adder before
being converted to analog signals. Again, it is important that the combination of both signals do
not go beyond the DAC range as it is shown here:

4 ry
+1 Q WRONG +1 Q RIGHT

., b

§ Waorst Case "-, _." Waorst Case A
1.0 H 5 10

k 4
v
A
v

. *a B

...................

Figure 5-5 DAC Clipping in IQM TWO Mode

In the TWO mode, the best way to handle normalization is by using the addition of the module
for both IQ pairs and then normalize all four components together so the worst case combination
does not go out of the DAC range.

Quantization must be also performed carefully as it may result in baseband waveforms with some
DC component that will show up as a residual carrier in the final IQ modulated waveform. First,
the normalized signal must keep the original DC level, what can result in asymmetrical negative
and positive peaks. Second the right range for the quantization must go from code 1 (and not
zero) to code 2”~N-1, where N is the resolution of the samples (i.e. 16 for Proteus). If the full range
is used, and small but noticeable residual carrier will show up in the output signal as the number
of valid levels in the positive and negative ranges around the mid-level value (1000x for the 16-
bit samples in Proteus) are not equal in size as it can be seen here for a 4-bit quantizer:

Confidential | 85

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Vout RIGHT
FS — WRONG

Code In

-FS

Figure 5-6 Quantization of an 1Q Waveform

Parameters

Name Type Default Description

HALF Discrete NONE 'I'in channel 1 and 'Q' in channel 2.

ONE Discrete 1 1Q-Pair, organized in pairs of 'l' sample followed by
'Q' sample.

TWO Discrete 2 1Q pairs organized in 4-tuples of the form
(11,01,12,92).

Response

The Proteus will return the IQ modulation type.

Example
Command :IQM ONE
Query : IQM?

5.10 [:SOURce]:FREQuency[:RASTer]{<sclk>| MINimum |
MAXimum}(?)

Description

Use this command to set or query the sample clock frequency for the DAC in units of samples per
second (Sa/s). The actual waveform sample rate will be determined by the combination of the
DAC’s sample rate and the corresponding repetition factor (set by the [:SOURce]:PTRepeat
command) or the interpolation factor (set by the [:SOURce]:INTerpolation command).

Confidential | 86

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Range Type Default Description

<sclk > 1le9to 1.25 |Numeric 1le+09 Will set the sample clock frequency of the
(P128x), 2.5 arbitrary and sequenced waveform in units of
(P258x), or Sa/s. The sample clock command can be
9e9 (p908x programmed with resolutions up to 10 decimal
and P948x places.

<MINimum> Discrete Will set sample clock to 1e09 Sa/s.

<MAXimum> Discrete Will set sample clock to maximum rate.

Response

The Proteus unit will return the present sample clock frequency value. The returned value will be
in non-scientific format with 3 decimal digits (for example: 1 GHz would be returned as
1000000000.000 — positive numbers are unsigned).

Example
Command :FREQ 5.0e+09
Query :FREQ?

5.11 [:SOURce]:FREQuency:SOURce{
INTernal | EXTernal}(?)

Description

Use this command to select or query the source of the sample clock generator for all channels in
a Proteus unit. This command affects all of the waveforms, as the internal clock is removed, and
external clock is applied. Make sure that a valid clock is applied to the external clock input before
you change the option to external, because the generator cannot generate waveforms without a
valid source of sample clock generator. Note that the internal sample clock generator is unique
for each 4-channel group however, when an external clock source is selected, the same source is
applied to all channels.

Parameters

Name Type Default Description

INTernal Discrete INT Selects the internal clock generator as the main clock
source.

EXTernal Discrete Activates the external sample clock input. A valid
signal must be applied from the external signal to the
Proteus for the generator to continue generating
waveforms. Observe the input level and limitations
before connecting an external signal to the external
sample clock input.

Response

The Proteus will return INT, or EXT depending on the current sample clock source setting.

Example
Command :FREQ:SOUR EXT

Confidential | 87

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Query : FREQ: SOUR?

5.12 [:SOURce]:FREQuency:OUTPut[:STATe]{OFF|ON|0]|1
1)

Description
This command will set or query the output state of the SCLK clock for all channels.

Parameters

Range Type Default Description

0-1 Discrete 0 Sets the output on and off.
Response

The Proteus will return 1 if the output is on, or 0 if the output is off.

Example
Command :FREQ:OUTP ON
Query :FREQ:OUTP?

5.13 [:SOURce]:FUNCtion:MODE[:TYPE]
{ARBitrary | TASK}(?)

Description

Use this command to set or query the type of waveform that will be available at the output
connector.

Parameters

Name Type Default Description

<ARBitrary> Discrete ARB Selects the arbitrary waveform shapes. Arbitrary
waveforms must be loaded to the Proteus memory
before they can be replayed. Refer to 9 Arbitrary
Waveform Commands, page 122.

<TASK> Discrete Selects one of the sequences defined in the task lists

Response

The Proteus will return ARB or TASK depending on the present output function mode setting.

Example
Command :FUNC:MODE TASK
Query : FUNC :MODE?

Confidential | 88

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

5.14 [:SOURce]:FUNCtion:MODE:SEGMent
<segment_number>(?)

Description

Use this command in case of Arbitrary mode to set or query the active segment to be played back
for the user generation mode for the channel selected with the :INST:ACT and :INST:CHAN
commands. The first 128 segment are "Fast-Segments".

Parameters

Name Range |Type Default Description

<segment_number>|1-64k |Integer 1 Will set the segment number to be played back. If
segment # is greater than the last available segment,
then the last segment will be played back. Argument
0 or no argument, currently selected segment will be
played back.

Response

The Proteus unit will return the designated segment to be played back.

Example
Command : FUNC:MODE : SEGM 123
Query : FUNC : MODE : SEGM?

5.15 [:SOURce]:FUNCtion:MODE:TASK< task_number>(?)

Description

Use this command in case of Task-Mode to set or query the initial task to be played back for the
task generation mode for the channel selected with the :INST:ACT and :INST:CHAN commands.

Parameters

Name Range |Type Default Description

<task_number> 1-64k |Integer 1 Will set the task number to be played back. If task #
does not point to a start sequence or single tasks,
then the first previously available start task will be
designated for play back.

Response

The Proteus unit will return the designated first task number to be played back.

Example
Command :FUNC:MODE: TASK 3
Query : FUNC : MODE : TASK?

Confidential | 89

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

5.16 [:SOURce]:ROSCillator:SOURce{
INTernal | EXTernal}(?)

Description

Use this command to set or query the source of the 10 MHz reference clock. This source defines
the accuracy and stability of the clock generator. The internal reference has an accuracy and
stability of 1 ppm; applications requiring higher accuracy or stability can use an external reference
clock and use an improved 10 MHz or, alternatively, 100MHz signal

Parameters

Name Type Default Description

INTernal Discrete INT Selects an internal source. The internal source is a
TCXO (Temperature Compensated Crystal Oscillator)
device that has 1ppm accuracy and stability over the
operating temperature range.

EXTernal Discrete Reroutes the 10 MHz source to the external reference
input. An external reference must be connected to the
Proteus for it to continue with its normal operation.

Response

The Proteus will return INT, or EXT depending on the present 10 MHz clock reference source
setting.

Example
Command :ROSC:SOUR EXT
Query :ROSC:SOUR?

5.17 [:SOURce]: ROSCillator:FREQuency{ 10M |100M}(?)

Description

Use this command to set or query the frequency range that will be applied to the reference
oscillator input. The frequency value must be close to the value of the external frequency because
it sets up the PLLs for the reference oscillator to accept and lock on the correct external frequency
value.

Parameters

Name Type Default Description

10M Discrete 100M Sets the frequency of the external reference to
10 MHz.

100M Discrete Sets the frequency of the external reference to
100 MHz.

Response

The Proteus will return 10M, or 100M depending on the present external clock reference source
setting.

Confidential | 90

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :ROSC:FREQ 100M
Query :ROSC:FREQ?

5.18 [:SOURce]:VOLTage[:AMPLitude]
{<amplitude> | MINimum | MAXimum}(?)

Description

Use this command to set or query the voltage amplitude of the waveform for the currently
selected channel. The Proteus displays a calibrated value when on load impedance of 50 Q offset
and amplitude settings are independent providing that the “offset + amplitude/2” value does not
exceed the specified voltage window. This command does not apply to the AC output module.

Parameters

Name Range Type Default Description

< amplitude > le-3to 1.2 Numeric 0.5 Will set the amplitude of the output waveform
in units of volts. The display shows the correct
amplitude level only when the output cable is
terminated into 50Q. The range varies
depending on the output module installed.

MINimum Discrete Will set the amplitude to the lowest possible
level.

MAXimum Discrete Will set the amplitude to the highest possible
level.

Response

The Proteus will return the present DAC amplitude value. The returned value will be in standard
scientific format (for example: 100 mV would be returned as 100e-3, positive numbers are
unsigned).

Example
Command :VOLT 0.8
Query :VOLT?

5.19 :SOURce]:VOLTage:OFFSet{<offset>| MINimum | MAX
imum}(?)

Description

Use this command to set or query the DC offset of the output waveform for the currently selected
channel. The Proteus unit displays a calibrated value with a load impedance of 50 Q. Offset and
amplitude settings are independent providing that the |offset + amplitude| value does not exceed
the specified amplitude window. This command does not apply to the DIRECT output option as it
is AC-coupled.

Confidential | 91

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Range Type Default Description

< offset > -0.5t0 0.5 Numeric 0 Will set the offset of the output waveform in
units of volts. The display shows the correct
offset level only when the output cable is
terminated into 50Q.

<MINimum> Discrete Will set the offset to the lowest possible level.

<MAXimum> Discrete Will set the offset to the highest possible level.

Response

The Proteus unit will return the present dc offset value. The returned value will be in standard
scientific format (for example: 100 mV would be returned as 100e-3 — positive numbers are
unsigned).

Example
Command :VOLT:OFFS 0.5
Query :VOLT :OFFS?

Confidential | 92

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

6 Marker Output Commands

The Marker Output Control Commands group is used for programming the characteristics of the
marker outputs. Each Proteus module has up to 8 single-ended marker outputs. These outputs
are located in the front panel. Each marker can be programmed to have unique properties such
as: delay, position, width and level. Depending on the Proteus version and the total number of
channels and marker outputs, there may be a total of up to two (2) or four (4) markers per channel.
Markers are downloaded to the target generator unit independently of waveform data.

Specific physical marker outputs are identified by a number ranging for the currently active
channel 1 to 4 for two AWG channel configurations or 1 to 2 for four channel configurations.
Marker transitions cannot be defined for all the samples. The 1.25GSa/s and 2.5GSa/s Proteus
models can change the marker state every two samples, while the 9GSa/s units can do it every
eight samples. This means that the maximum number of marker states that can be defined for a
given segment is WL/2 or WL/8 respectively, where WL (waveform length) is the size of the
segment in samples.

Factory defaults after *RST are shown in the default column. Parameter low and high limits are
given where applicable. Use the commands in Table 2-4 Marker Output Commands to set up the
Proteus marker outputs and their associated parameters.

Marker data is transferred to/from the Proteus waveform memory in an efficient way so all the
time-aligned states for the markers associated to the selected channel are transferred in a single
byte. For the 1.25GS/s and 2.5GS/s Proteus models (and also for the P948X models when used at
sampling rates equal to or lower than 2.5GS/s) two consecutive states per byte are transferred,
one using the 4 LSBs and the next using the 4 MSBs. For the 9GS/s models, one state per byte is
transferred. This means that the maximum size (in bytes) of the transfer is waveform_length / 4
for the 1.25/2.5GS/s models, and waveform_length / 8 for the 9GS/s models.

Confidential | 93

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

8-Bit Sample Size (SampleRate >2.5GS/s)
Only one byte to represent
each marker data point

M4 | M3 | M2 | M1

» Bit 1, represent a data point for Marker 1

Bits 4 to 7 are * Bit 2, represent a data point for Marker 2
not in use » Bit 3, represent a data point for Marker 3

» Bit 4, represent a data point for Marker 4

16-Bit Sample Size (SampleRate <=2.5GS/s)

Only one byte to represent
two marker data points

Ma [M3 | M2 | M1 | M4 | M3 ‘ M2 | M1
Bit 7, represents the next data point for Marker 4 « » Bit 1, represents a data point for Marker 1
Bit 6, represents the next data point for Marker3 * Bit 2, represents a data point for Marker 2
Bit 5, represents the next data point for Marker 2 - + Bit 3, represents a data point for Marker 3
Bit 4, represents the next data point for Marker 1 - » Bit 4, represents a data point for Marker 4

Figure 6-1 Marker Format

6.1 :MARKer:SELect{1]|2]|3|4}(?)

Description

This command will select a given marker of the currently selected channel for programming.
Markers (numbered 1 to 4 in the Proteus unit front panel) are associated to specific arbitrary
waveform generation channels. Depending on the Proteus version and the total number of
channels and marker outputs, there may be a total of up to two (2) or four (4) markers per channel.

Parameters

Range Type Default Description

1to4 Discrete 1 Select a specific marker output
Response

The Proteus will return the selected marker.

Example
Command :MARK:SEL 3
Query :MARK : SEL?

6.2 :MARKer[:STATe]{OFF|ON|0|1}(?)

Description

This command will set or query the state of the marker outputs for the current active marker.
Markers (numbered 1 to 4 on the Proteus unit front panel) are associated to specific arbitrary

Confidential | 94

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

waveform generation channel. Depending on the Proteus version and the total number of
channels and marker outputs, there may be a total of up to two (2) or four (4) markers per channel.
Note that for safety, the outputs always default to off, even if the last instrument setting before
power down was on. The on/off setting affects both markers simultaneously on each channel.

Parameters

Range Type Default Description

0-1 Discrete 0 Sets the marker output on and off.
Response

The Proteus will return 1 if the marker output is ON, or 0 if the marker output is OFF.

Example
Command :MARK ON
Query :MARK?

6.3 :MARKer:DELay:COARse <delay>(?)

Description

Use this command to set or query the coarse delay of the marker output. The delay is measured
from the sync output in units of samples. The marker has an initial delay of 0 sample clock periods,
not including initial skew.

Parameters

Name Range Type Default |Description

< delay > 16-bit DAC Numeric 0 Will set marker coarse delay value in units of
mode (MO0): samples. Each channel has two/four separate
-255-+254 markers that can be programmed to have
8-bit DAC mode unique delays and amplitude levels. The
(M1): resolution is 2 points in case of 8-bit DAC mode,
-1024 - +1016 and 8 points in case of 16-bit DAC mode.

Response

The Proteus will return the present coarse marker delay value. The returned value will be in
unsigned integer format.

Example
Command :MARK:DEL:COAR 232
Query :MARK:DEL: COAR?

6.4 :MARKer:DELay:FINE<delay>(?)

Description

Use this command to set or query the delay of the marker output. The delay is measured from
the sync output in units of seconds. The marker has an initial delay of 0 seconds (after factory
calibration).

Confidential | 95

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters
Name Range Type Default Description
< delay > -0.6e-9 to Numeric 0 Will set marker delay value in units of seconds.
0.6e09 Each channel has two/four separate markers
that can be programmed to have unique
delays and amplitude levels.
Response

The Proteus will return the present marker delay value. The returned value will be in standard
scientific format (for example: 1 ns would be returned as 1e-9 — positive numbers are unsigned).

Example
Command :MARK:DEL:FINE 1.0e-9
Query :MARK : DEL: FINE?

6.5 :MARKer:VOLTage:LEVel <gain>(?)

Description

Use this command to set or query the marker gain. The level is defined in dB.

Parameters

Name Range Type Default Description

< gain > 0.0to0 32.0 Numeric 0.0 Will program the marker gain in dB. Each
marker can be programmed to a different gain
setting.

Response

The Proteus will return the present marker gain in dB. The returned value will be in standard
scientific format (for example: 1.0 dB would be returned as 1e0 — positive numbers are unsigned).

Example
Command :MARK:VOLT:LEV 1.0
Query :MARK:VOLT:LEV?

6.6 :MARKer:VOLTage:PTOP<ptop_level>(?)

Description

Use this command to set or query the peak-to-peak level of the marker output. The level is defined
in unit of volt.

Parameters
Name Range Type Default Description
< ptop_level> |0.05to0 1.2 Numeric 0 Will program the marker peak-to-peak level in

units of volts. Each marker can be
programmed to a different peak-to-peak level
setting. The peak-to-peak level is calibrated
when the cable is terminated into a 50Q load.

Confidential | 96

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response

The Proteus will return the present marker peak-to-peak level value. The returned value will be
in standard scientific format (for example: 1.0 V would be returned as 1e0 — positive numbers are
unsigned).

Example
Command :MARK:VOLT:PTOP 1.0
Query :MARK:VOLT : PTOP?

6.7 :MARKer:VOLTage:OFFSet<offset>(?)

Description

Use this command to set or query the offset level of the marker output. The offset level is defined
in units of volts.

Parameters

Name Range Type Default Description

< offset > -0.5to +0.5 |Numeric 0 Will program the offset level in units of volts.
Each marker can be programmed to a different
low- and high-level setting. The offset level is
calibrated when the cable is terminated into a
50 Q load.

Response

The Proteus will return the present marker offset value. The returned value will be in standard
scientific format (for example: 0.1 V would be returned as 100e-3 — positive numbers are
unsigned).

Example
Command :MARK:VOLT:OFFS 0.5
Query :MARK:VOLT :OFFS?

6.8 :MARKer:DATA
[<offset>]#<header><binary_block>(?)

Description

This command will download marker data to the Proteus unit sequence memory for the active
segment and channel. Marker data is loaded to the Proteus unit using high-speed binary data
transfer. High-speed binary data transfer allows any number of 8-bit bytes to be transmitted in a
message. Refer to the Proteus user manual chapter Markers for a detailed description.

The next command will download to the generator a block of marker data of 1,024 entries:
:MARK:DATA #41024<binary_block>

This command causes the transfer of 1,024 bytes of data (1,024 marker states) into the active
memory segment. The <header> is interpreted this way:

e The ASCII "#" ($23) designates the start of the binary data block.
¢ "4" designates the number of digits that follow representing the binary data block size in bytes.

Confidential | 97

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

¢ "1,024" is the number of bytes to follow.
¢ <binary_block> Represents task-related data.

Response

The Proteus will return the #<header><binary-block>\n.

Parameters
Name Range Type Default [Description
< offset > 0, Integer 0 Will set the initial marker state number for
<max_states> the download of marker data.
< header > Integer Contains information on the size of the
binary block that follows.
< binary_block > Binary Block of binary data that contains task-
related data, as explained above.
Example
Command :MARK:DATA #42048<binary block>
Query :MARK:DATA? 64,#42048<binary block>

6.9 :MARKer:MEMory
<offset_in_bytes>,##i<header><marker-data>(?)

Description

Direct download to the arbitrary memory without any segment attributes. This command (or
query) is the same as :MARK[:DATA] [<offset-in-bytes-of-wave-data>] #<binary-header><binary-
data> except that the offset, in case of :MARKer:MEMory, is from the beginning of the memory-
space rather than the beginning of memory of the selected segment.

Parameters

Name Range Type Default |Description

<offset_in_bytes>|0, Integer |0 Will set the initial marker state number for the

<max_states>| download of marker data of the selected segment.

<header> Integer Contains information on the size of the binary block
that follows.

<marker-data> Binary Block of binary data that contains task-related data,
as explained above.

Response

The Proteus will return the #<header><binary-block>\n.

Note: A comma is required to separate between the offset and the size.

Example
Command :MARK:MEM 16#42048<binary block>
Query :MARK:MEM? 16,#42048<binary block>

Confidential | 98

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

6.10 :MARKer:FILE[:NAMe]{<#<header><binary_block>}

Description

This command will set-up the marker information as the :MAR:DATA command does but reading
the contents from a file stored in the target standalone Proteus. The file name is defined as an
IEEE-488.2 binary block with the name codified in 8-bit unsigned integers (bytes) with the ASCII
codes containing the full path to the source file.

Parameters

Name Type Description

<header> Discrete The first digit in ASCII following the ‘# character is the number
of digits to follow. The following digits specify the length of the
target file full path name in ASCII.

<binary_block> String Full path name for the file in ASCIl coded as an unsigned short
integer array.

Example

Command :MARK:FILE #21lOmarker.dat

6.11 :MARKer:FILE:OFFSet< start-offset inside the file>(?)

Description

This command will set the start offset in the file in bytes for the load or store command.

Parameters

Name Range Type Default Description
< start-offset Numeric (int(|0 Bytes
inside the file>

Response
The Proteus will return the start offset in bytes.

Note: A comma is required to separate between the offset and the size.

Example
Command :MARK:FILE:OFFS 256
Query :MARK: FILE : OFFS?

6.12 :MARKer:FILE:DESTination < SEGMent |
MEMory>(?)

Description

This command specifies the destination to load/store the file data.

Parameters
Name Range Type Default Description
SEGMent Discrete SEGM The selected segment.

Confidential | 99

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Name Range Type Default Description
MEMory Discrete The arbitrary-memory space.
Response

The Proteus will return the selected file destination

Example
Command :MARK:FILE:DEST SEGM
Query :MARK : FILE : DEST?

6.13 :MARKer:FILE:LOAD [[<offset>,]<size>]

Description

Load block of markers-data from the binary-file specified in :MARKer:FILE:NAME to the
hardware-memory specified in :MARKer:FILE:DESTination. The starting offset in the file is
specified in :MARKer:FILE:OFFSet, while the block-size and the write-offset in the destination
hardware memory are specified by the (optional) arguments of the command. If the <offset>
argument is missing then zero <offset> is assumed. If both the <offset> argument and the <size>
argument are missing, then all data from the start-offset in the file to the end of the file is
written.

Parameters

Name Range Type Default [Description

< offset > Numeric(int64) 0 Will set the start offset in the selected
memory space in bytes of markers-data.

<size> Numeric(int64) The size of the binary block in bytes of
markers-data.

Example

Command :MARK:FILE:LOAD 64,42048

6.14 :MARKer:FILE:STORe [[<offset>,]<size>]

Description

Store block of markers-data from the hardware memory specified in :MARKer:FILE:DESTination to
the binary-file specified in :MARKer:FILE:NAME. The block-size and the write-offset in the
hardware memory are specified by the (optional) arguments of the command. If the <offset>
argument is missing then zero <offset> is assumed. If both the <offset> argument and the <size>
argument are missing, then all data from the start-offset in the segment to the end of the segment
is written.

Parameters

Name Range Type Default |Description

< offset> Numeric(int64) 0 Will set the start offset in the selected
memory space in bytes of markers-data

<size> Numeric(int64) The size of the binary block in bytes of
marker data.

Confidential | 100

@meeq ELECTRONICS Proteus Programming Manual Rev.1.4

Example

Command ‘MARK:FILE:STOR 64,42048

Confidential | 101

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

7 Task Commands

The task commands allows for the creation, edition and removal of a table of tasks. The task table
can contain up to 64K entries. Each entry holds all the data for a given task. Tasks point always to
a given segment # and may be part of a sequence of tasks.

7.1 :TASK:COMPoser:LENGth<length>(?)

Description
Use this command to define the length of the task table.

Parameters

Name Range Type Default Description

<length > Oto64k Numeric(int) |1 Allocate array of task table-rows for the task-
table composer

Response

The Proteus unit will return the size of the task table.

Example
Command : TASK:COMP:LENG 100
Query : TASK:COMP : LENG?

7.2 :TASK:COMPoser:SELect<task_#>(?)

Description
Use this command to select or query the task number to be defined.

Parameters

Name Range Type Default Description

< task_#> 1 to 64k Numeric(int) |1 Define the task # to be set up.
Response

The Proteus unit will return currently selected task number.

Example
Command :TASK:COMP:SEL 10
Query : TASK:COMP: SEL?

7.3 :TASK:COMPoser[:DEFine]:TYPE{SINGle |STARt|END

|
SEQ}(?)

Description

Use this command to define the task type the current entry in the task table. It is possible to define
different sequences within the task table. A sequence is comprised of a start task, optional

Confidential | 102

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

intermediate tasks, and an end task. Once a number of tasks are defined as a sequence it is
possible to program the number of times the sequence will be repeated. The task # must be
selected before using this command or query through the :TASK:SEL command.

Parameters

Name Type Default Description

<SINGle> Discrete SING Single step task.

<STARt> Discrete Initial task in a sequence.

<END> Discrete Final task in a sequence.

<SEQ> Discrete Intermediate task in a sequence.
Response

The Proteus unit will return SING, STAR, END, or SEQ depending on the type of the currently
selected task.

Example
Command : TASK:COMP:TYPE STAR
Query : TASK:COMP:TYPE?

7.4 :TASK:COMPoser[:DEFine]:LOOPs<task_loops>(?)

Description

Use this command to define the number of loops for the current entry in the task table. The task
must be selected before using this command or query through the :TASK:SEL command.

A task table is made up of several tasks (lines in the task table). There can be up to 64K tasks, or
lines in the task table. Each task defines which segment is generated. The task loops parameter
defines how many times the current task is repeated. The KEEP parameter (refer to
:TASK:COMPoser[:DEFine]:KEEP{OFF|ON|0]1}(?)) is with respect to the trigger. So if the number
of Task loops is N, and the enabling signal is TRIG1. There are 2 options of how this task plays out
when a trigger is initiated to TRIG1:

1. KEEP=0 - A single trigger is received, and the task is played N times.

2. KEEP=1 — A trigger is received, and the task is played once. After N triggers the task is
completed and it proceeds to the next task (line) in the task table.

Parameters

Name Range Type Default Description

<task_loops> 0-1M Numeric (int) |1 Number of loops for the task. 0 = Infinite
Response

The Proteus unit will return the number of loops for the current task.

Example
Command : TASK:COMP:LOOP 1234
Query : TASK:COMP : LOOP?

Confidential | 103

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

7.5 :TASK:COMPoser[:DEFine]:SEQuence<seq_loops>(?)

Description

Use this command to define the number of loops for the current sequence. The task # for the
START task must be selected before using this command or query through the :TASK:SEL
command.

Parameters

Name Range Type Default Description

<seq_loops> 0-1M Numeric (int) |1 Number of loops for the sequence. 0 = Infinite.
Response

The Proteus unit will return the number of loops for the current sequence.

Example
Command :TASK:COMP:SEQ 123
Query : TASK:COMP: SEQ?

7.6 :TASK:COMPoser[:DEFine]:SEGMent<segment>(?)

Description

Use this command to define the segment attached to the current entry in the task table. The task
must be selected before using this command or query through the :TASK:SEL command. The
same segment may be used by any number of tasks.

Parameters

Name Range Type Default Description

<segment> 1-64k Numeric (int) |1 Segment # associated to this task.
Response

The Proteus unit will return the segment number for the current task.

Example
Command : TASK:COMP:SEGM 62345
Query : TASK:COMP : SEGM?

7.7 :TASK:COMPoser[:DEFine]:IDLE[:TYPE]
{DC|FIRSt| CURRent}(?)

Description

Use this command to define the behavior of the current task while in the idle state. The task must
be selected before using this command or query through the :TASK:SEL command.

Parameters
Name Type Default Description
<DC> Discrete DC DC level

Confidential | 104

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Name Type Default Description

<FIRST> Discrete First level in the segment associated to the task.
<CURRENT> Discrete Continuous loop of the current segment.
Response

The Proteus will return FIRS, DC or CURRENT depending on the current idle mode setting

Example
Command :TASK:COMP: IDLE FIRS
Query : TASK:COMP: IDLE?

7.8 :TASK:COMPoser[:DEFine]:IDLE:LEVel
{<DC_level>}(?)

Description

Use this command to define the DC level while in the idle state for the current task when the idle
type has been set to DC. The task must be selected before using this command or query through
the :TASK:SEL command.

Parameters
Name Range Type Default Description
<dc_level> Oto2550r |Numeric 128/32,768 |Programs the DC level during the idle state in
65,535 guantization levels. 0-255 for the 8-bit DAC
(M1) mode and 0-65535 for the 16-bit DAC
(MO0) mode.
Response

The Proteus unit will return the level for the idle state for the current task.

Example
Command :TASK:COMP:IDLE:LEV 24567
Query : TASK:COMP: IDLE:LEV?

7.9 :TASK:COMPoser[:DEFine]:ENABIe{NONE | TRG1|TRG
2| TRG3|TRG4|TRG5 | TRG6 | INTernal |CPU | FBTRg]|
ANY}(?)

Description

Use this command to define enabling signal for the current entry in the task table. The task # must
be selected before using this command or query through the :TASK:SEL.

Parameters

Name Type Default Description

<NONE> Discrete NONE No enabling signal required.
<TRG1> Discrete Trigger input 1

Confidential | 105

@maoq ELECTRONICS Proteus Programming Manual Rev. 1.4
Name Type Default Description

<TRG2> Discrete Trigger input 2

<TRG3> Discrete Trigger input 3

<TRG4> Discrete Trigger input 4

<TRG5> Discrete Trigger input 5

<TRG6> Discrete Trigger input 6

<INTernal> Discrete Enabling signal generated internally.

<CPU> Discrete Enabling signal through SCPI command.
<FBTRg> Discrete Enabling signal generated by the digitizer block
<ANY> Discrete Any of the above.

Effected Channels

Trigger

Model

Effected Channels

TRG1

All

All channels

TRG2

All

All channels

TRG3

P1288D

P12812D

P2588D

P25812D

CH5 -CH8

P1288B

P12812B

P2588B

P25812B

P9084D

P9086D

CH3 - CH4

P9084B

P9086B

TRG4

P1288D

P12812D

P2588D

P25812D

CH5 -CH8

P1288B

P12812B

P2588B

P25812B

P9084D

P9086D

CH3 - CH6

Confidential | 106

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

P9084B
P9086B

P12812D

P25812D
P12812B
P25812B
P9086D

CH9-CH12

TRG5

CH5 -CH6
P9086B

P12812D

P25812D
P12812B
P25812B
P9086D

CH9-CH12

TRG6

CH5 -CH6

P9086B

Response

The Proteus unit will return the enabling signal source currently selected for the current task.

Example
Command :TASK:COMP:ENAB FBTR
Query : TASK: COMP : ENAB?

7.10 :TASK:COMPoser[:DEFine]:ABORt{
NONE|TRG1|TRG2|TRG3|TRG4|TRG5|TRG6|
INTernal | CPU | FBTRg | ANY }(?)

Description

Use this command to define the abort signal for the current entry in the task table. The task #
must be selected before using this command or query through the :TASK:SEL command.

Parameters

Name Type Default Description

<NONE> Discrete NONE No abort signal required.
<TRG1> Discrete Trigger input 1

<TRG2> Discrete Trigger input 2

<TRG3> Discrete Trigger input 3

<TRG4> Discrete Trigger input 4

<TRG5> Discrete Trigger input 5

<TRG6> Discrete Trigger input 6

<INTernal> Discrete Abort signal generated internally.

Confidential | 107

@TABOR ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Name Type Default Description

<CPU> Discrete Abort signal through SCPI command.
<FBTRg> Discrete Abort signal generated by the digitizer block.
<ANY> Discrete Any of the above.

Effected Channels

Trigger

Model

Effected Channels

TRG1

All

All channels

TRG2

All

All channels

TRG3

P1288D

P12812D

P2588D

P25812D

P1288B

CH5 -CH8

P12812B

P2588B

P25812B

P9084D

P9086D

CH3 - CH4

P9084B

P9086B

TRG4

P1288D

P12812D

P2588D

P25812D

P1288B

CH5 -CH8

P12812B

P2588B

P25812B

P9084D

P9086D

P9084B

CH3 - CH6

P9086B

TRG5

P12812D

P25812D

CH9-CH12

P12812B

Confidential | 108

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

P25812B
P9086D

CH5 -CH6
P9086B

P12812D

P25812D
P12812B
P25812B
P9086D

CH9-CH12

TRG6

CH5 -CH6
P9086B

Response

The Proteus unit will return the enabling signal source currently selected for the current task.

Example
Command : TASK:COMP:ABOR FBTR
Query : TASK:COMP : ABOR?

7.11 :TASK:COMPoser[:DEFine]:JUMP{EVENtually|
IMMediate}(?)

Description

Use this command to define the way to jump to a different task for the currently selected task
when a valid ABORT event occurs. The task # must be selected before using this command or
query through the :TASK:SEL command.

Parameters

Name Type Default Description

< EVENtually > Discrete Sets the effective jump to happen at the end of the
current loop.

< IMMediate > Discrete IMM Results in jumping without waiting for the end of the
loop.

Response

The Proteus unit will return the jumping mode for the current task.

Example
Command : TASK:COMP: JUMP IMM
Query : TASK:COMP : JUMP?

Confidential | 109

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

7.12 :TASK:COMPoser[:DEFine]:DESTination{NEXT |
FBTRg | TRG | NTSel | SCENario | DSP |DSIG}(?)

Description

Use this command to define the next task to be generated after the currently selected task. The
task # must be selected before using this command or query through the :TASK:SEL command.

Parameters

Name Type Default Description

<NEXT> Discrete NEXT Points to the next task to be generated according to
the :NEXT1 command setting

<FBTRg> Discrete Points to the next task to be generated according to
the digitizer setting.

<TRG> Discrete A conditional jump. Points to the next task to be
generated according to the trigger inputs. Valid signal
at trigger 1 points to the next task as set in :NEXT1
setting while a valid signal at trigger 2 points to next
task as set in :NEXT2 setting.

<NTSel> Discrete The next task in the table

<SCENario> Discrete The beginning of next scenario

<DSP> Discrete Destination is NEXT1 current segment to be generated
is according to decision block condition in DSP.

<DSIG> Discrete NEXT1 if digitizer-signal = 1, NEXT2 if digitizer-signal =
0.

Response

The Proteus unit will return the next task number mode for the current task.

Example
Command :TASK:COMP:DEST TRG
Query : TASK:COMP : DEST?

7.13 :TASK:COMPoser[:DEFine]:NEXT1 <next_task>(?)

Description

Use this command to define the next task to be generated after the currently selected task. The
task # must be selected before using this command or query through the :TASK:SEL command.

Parameters

Name Range Type Default Description

<next_task> 1-64k Numeric (int) |1 Next task # to be generated after the current
task is executed. “0” means end.

Response

The Proteus unit will return the next task to be generated after the current task is executed.

Confidential | 110

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command : TASK:COMP:NEXT1 1456
Query : TASK:COMP :NEXT1?

7.14 :TASK:COMPoser[:DEFine]:NEXT2 <next_task>(?)

Description

When setting a conditional jump use this command to define the next task to be generated after
the currently selected task when the Trigger 2 input or digitizer-signal=0 are the source for
jumping. The task # must be selected before using this command or query through the :TASK:SEL
command.

Parameters

Name Range Type Default Description

<next_task> 1-64k Numeric (int) |1 Next task # to be generated when trigger input
2 or digitizer-signal=0 are the source for
conditional jJump. “0” means end.

Response

The Proteus unit will return the next task number mode for the current task when trigger 2 or
digitizer-signal=0 are the source for jumping.

Example
Command : TASK:COMP:NEXT2 1456
Query : TASK:COMP :NEXT2?

7.15 :TASK:COMPoser[:DEFine]:DELay<task_delay>(?)

Description

Use this command to define the delay in clocks before executing the next task. The task # must
be selected before using this command or query through the :TASK:SEL command.

Parameters

Name Range Type Default Description

< task_delay> 0-65536 Numeric (int) |0 Delay in SCLK cycles.
Response

The Proteus unit will return the delay for the next task in SCLK cycles.

Example
Command :TASK:COMP:DEL 1000
Query : TASK:COMP :DEL?

Confidential | 111

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

7.16 :TASK:COMPoser[:DEFine]:KEEP{OFF|ON|0|1}(?)

Description

Use this command to define the behavior of loops for this task with respect to the trigger. The
task # must be selected before using this command or query through the :TASK:SEL command.

Parameters

Range Type Default Description

0-1 Numeric (int) 0 0 — The task loops are executed consecutively when
enabled.
1 —The task is executed once per valid enabling signal
until all task loops have been executed.

Response

The Proteus will return 1 if the keep state is set to ON, or 0 if the keep state is set to OFF.

Example
Command : TASK:COMP :KEEP ON
Query : TASK:COMP :KEEP?

7.17 :TASK:COMPoser[:DEFine]:DTRigger{OFF|ON|O|1}(?
)

Description

Use this command to generate the digitizer trigger. In order to this event being effective, the
digitizer trigger source must be set with the :DIG:TRIG:SOUR TASKx command, where x is the
channel number of the AWG where the relevant task list is being generated (1-4).

Parameters

Range Type Default Description

0-1 Numeric (int) 0 When set to 1 the digitizer trigger is enabled.
Response

The Proteus will return 1 if the digitizer trigger is set to ON, or O if the digitizer trigger is set to
OFF.

Example
Command : TASK:COMP:DTR ON
Query : TASK:COMP :DTR?

7.18 :TASK:COMPoser:WRITE<offset in task table rows>

Description

Write the composer's array to the task-table of the selected channel at the specified offset (no
query). Issue this command once all the Task table parameters have been defined.

Confidential | 112

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters
Name Range Type Default Description
< offset > 1to 64k Numeric(int) |1 The offset in the task table.
Example
Command :TASK:COMP:WRIT 100

7.19 :TASK:COMPoser:READ<offset in task table rows>

Description

Read the composer's array from the task-table of the selected channel at the specified offset (no
qguery). See :TASK:DATA command for data format definitions.

Parameters
Name Range Type Default Description
< offset > Oto64k Numeric(int) |1 The offset in the task table.
Example
Command : TASK:COMP:READ 100

7.20 :TASK:CURRent?

Description
Query only. Returns the current task number.

Response

The Proteus unit will return the maximum value for this control value in ASCIl format.
Example

Query :TASK : CURR?

7.21 :TASK: SYNC

Description

No query. Issue this command to synchronize the task tables of all channels. This command needs
to be issued every time before generation is started.

Example

Command :TASK: SYNC

7.22 :TASK:DATA [<offset>]#<header><binary_block>

Description

Write data to the specified offset in the task-table of the selected channel. Binary transfers are a
much faster way to define tasks lists, especially when they are long. Binary data is defined as an
array of structs (see format below) of fixed length, with one element representing each individual
task in the list. This format is also used when reading data from the task list using the

Confidential | 113

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

:TASK:COMP:READ command and when transferring task lists from/to files using the
:TASK:FILE:LOAD and :TASK:FILE:STOR commands.

As an example, the :TASK:DATA #41024<binary_block> command will cause the transfer of 1,024
bytes of data (1,024 marker states) into the active memory segment. The <header> is interpreted
this way:

e The ASCII "#" ($23) designates the start of the binary data block.

¢ "4" designates the number of digits that follow representing the binary data block size in bytes.
¢ "1,024" is the number of bytes to follow.

¢ <binary_block> Represents task-related data.

Parameters
Name Range Type Default |Description
< offset > 0 64k Numeric(int) 0 Write the data to specified offset in the task
table.
< header > Numeric(int) Contains information on the size of the
binary block that follows.
< binary_block > Binary Block of binary data that contains task-
related data, as explained above.
Type Bytes
UINT32 0-3 The segment number.
UINT32 4-7 The next task for trigger 1 (zero for end)
UINT32 8-11 The next task for trigger 2 (zero for end).
UINT32 12-15 |The task loop count.
UINT32 16-19 |The sequence loop count.
UINT16 20-21 |[The delay in clocks before executing the next
task.
UINT16 22 -23 |The DAC value of the idle task DC waveform.
UINT8 24 The behavior during idle-time.
0-DC
1 — First point
2 — Current segment
UINT8 25 The enabling signal.
0—None
1 - ExternTrigl
2 — ExternTrig2
3 —InternTrig
4—-CPU
5 — FeedbackTrig
6 — HW-Ctrl
UINT8 26 The aborting signal.
0—None
1 —ExterTrigl

Confidential | 114

@TABOR‘ ELECTRONICS

Proteus Programming Manual Rev. 1.4

2 — ExternTrig2
3 —InternTrig
4-CPU

5 — FeedbackTrig
6 —Any

UINTS8

27 How to decide where to jump.
0 — Nextl

1 - By FBTrig-value

2 — ExtTrig[1/2]->Next[1/2]

3 — NextTaskSel

4 — Next scenario

UINTS8

28 Task abort jump type.
0 — Eventually
1 - Immediate

UINT8

29 The task state.

0 -Single

1 — First of sequence
2 — Last of sequence
3 —Inside sequence

UINTS8

30 Task loop trigger enable, waiting for trigger
on looping.
1-Enable
0 — Disable

UINT8

31 Generate an ADC trigger at the beginning of
the current task.

1-Enable
0 — Disable

Example

Command :TASK:DATA #42048<binary block>

7.23 :TASK:FILE[:NAME] {##<header><binary_block>}

Description

This command will identify the file path storing the task table information for further transfers
to/from the task table. The file path is passed as a binary-block.

Parameters

Name Type Description

<header> Discrete The first digit in ASCIl is the number of digits to follow. The
following digits specify the length of the target file full path
name in ASCII.

<binary_block> String Full path name for the file in ASCII coded as an unsigned short
integer array.

Confidential | 115

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :TASK:FILE #210task_1l.dat

7.24 :TASK:FILE:OFFSet <start-offset>

This command will set the start offset inside the file in bytes.

Parameters
Name Type Description
<start-offset> Integer The start offset inside the file in bytes.
Example
Command :TASK:FILE:OFFS 64

7.25 :TASK:FILE:LOAD[<offset>,<num_of tasks>]

Description
This command will load task data from the file defined by the :TASK:FILE:NAME command to the
Proteus desktop unit task table memory. If the offset and number of tasks are not specified, then

the whole task-table is written. If the file is too small then the rest of the task-table rows are
zeroed. See :TASK:DATA command for data format definitions.

Parameters
Name Type Description
<offset> Integer Offset in task table rows
< num_of_tasks > Integer Number of task table rows
Example
Command :TASK:FILE:LOAD 12,128

7.26 :TASK:FILE:STORe[<offset>,<num_of tasks>]

Description

This command will save task data from the Proteus unit to the file defined by the :TASK:FILE:NAME
command. The command, when no parameters are specified, saves all the entries in the task table
in the file (no query). See :TASK:DATA command for data format definitions.

Parameters
Name Type Description
<offset> Integer Offset in task table rows
< num_of_tasks > Integer Number of task table rows
Example
Command ‘TASK:FILE:STOR 1,1280

Confidential | 116

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

7.27 :TASK:ZERO[:PORTion] <offset>,<num_of_tasks>

Description

This command will set the designated entries in the task to an “all zeros” content. Issue this
command e.g., when you have a task table of 8 tasks and want to write a task table of 4 tasks.

Parameters
Name Type Description
<offset> Integer Offset in task table rows
<num_of_tasks> Integer Number of task table rows
Example

Command ‘TASK:ZERO 100,250

7.28 :TASK:ZERO:ALL

Description
This command will set the all the entries in the task to an “all zeros” content.

Example

Command :TASK:ZERO:ALL

Confidential | 117

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

8 Scenario Commands

Note
Scenario commands are planned for a future release.

The scenario commands allows for the creation, edition and removal of scenario tables. The
scenario table can contain up to 1000 entries. Each entry holds a pointer to a task number in the
task table.

8.1 :SCENario:DEFine { <scenario-number>, <task-
number>, <loops>}(?)

Description
Use this command to define the specified entry in the scenario-table of the selected channel.

In principal it is a table consisting of Task numbers. So, if a task is a “playlist of songs” then a
scenario is a “playlist of playlists”.

Parameters

Name Range Type Default Description

<scenario- 1-1000 Numeric (int) Define the scenario number to be set up.

number>

<task-number> |1-64k Numeric (int) Define the task to be executed.

<loops> 1-1M Numeric (int) Set the number of times that segment is to be
repeated.

Response

The Proteus unit will return currently selected scenario number, task number and loops.

Example
Command :SCEN:DEF 10, 150, 2000
Query :SCEN:DEF?

8.2 :SCENario:DATA
{[<offset>,]#<header><binary_block>}

Description

This command will download scenario data to the Proteus unit sequence memory. Scenario data
is loaded to the Proteus unit using high-speed binary data transfer. High-speed binary data
transfer allows any number of 8-bit bytes to be transmitted in a message. This command is
particularly useful for sending large quantities of data. As an example, the next command will
download to the generator a block of scenario related data of 512 entries:

:SCEN:DATA #3512<binary_block>

This command causes the transfer of 512 bytes of data (256 waveform points) into the active
scenario. The <header> is interpreted this way:

Confidential | 118

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

e The ASCII "#" (0x23) designates the start of the binary data block.

e "4" designates the number of digits that follow representing the binary data block size in
bytes.

e "512"is the number of bytes to follow.

e <binary_block> Represents task-related data.

Parameters

Name Type Description

[<offset>] Integer Offset in scenario table rows.

< header > Discrete Contains information on the size of the binary block that
follows.

< binary_block > Binary Block of binary data that contains scenario-related data, as
explained above.

Example

Command :SCEN:DATA #3512<binary block>

8.3 :SCENario:FILE[:NAME]{ #<header><binary_block>}

Description

This command will identify the file path storing the scenario table information for further transfers
to/from the scenario table. The file path is passed as a binary block.

Parameters

Name Type Description

< header > Discrete The first digit in ASCIl is the number of digits to follow.
The following digits specify the length of the target file full
path name in ASCII.

< binary_block > Binary Full path name for the file in ASCII coded as an unsigned
short integer array.

Example

Command :SCEN:FILE #238“C:\\scenario_data\scenario_file 03.bin”

8.4 :SCENario:FILE:OFFSet {<offset>}

Description
This command will set the start offset inside the file in bytes.

Parameters
Name Type Description
<offset> Integer Set the start offset inside the file in bytes.
Example
Command :SCEN:FILE:OFFS 12

Confidential | 119

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

8.5 :SCENario:FILE:LOAD
{[<offset>,<num_of_scenarios>]}

Description

This command will load the task data from the file defined by the :SCEN:FILE:NAME command to
the Proteus unit task table memory. If the offset and number of tasks are not specified, then the
whole task-table is written. If the file is too small then the rest of the task-table rows are zeroed.

Parameters
Name Type Description
<offset> Integer Offset in scenario table rows
<num_of_scenarios> |Integer Number of scenario table rows
Example

Command :SCEN:FILE:LOAD 8,64

8.6 :SCENario:FILE:STORe
{[<offset>,<num_of scenarios>]}

Description

This command will save scenario data from the Proteus unit to the file defined by the
:SCEN:FILE:NAME command. The command, when no parameters are specified, saves all the
entries in the task table in the file (no query).

Parameters
Name Type Description
<offset> Integer Offset in scenario table rows
< num_of_scenarios > |Integer Number of scenario table rows
Example
Command :SCEN:FILE:STOR

8.7 :SCENario:ZERO[:SINGLe] <scenario-number>

Description
Reset the data of a single row in the scenario table of the selected channel (no query).

Parameters
Name Type Description
< scenario-number > |Integer Scenario number in the file to be processed.
Example
Command :SCEN:ZERO 100

Confidential | 120

@meeq ELECTRONICS Proteus Programming Manual Rev.1.4

8.8 :SCENario:ZERO:ALL

Description
This command will set the all the entries in the scenario table to an “all zeros” content.

Example
Command :SCEN:ZERO:ALL

Confidential | 121

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

9 Arbitrary Waveform Commands

This group is used to manage the arbitrary waveforms and their respective parameters. This will
allow you to create segments and download waveforms. Using these commands, you can also
define segment size and delete some or all unwanted waveforms from your memory.

Generating Arbitrary Waveforms

Arbitrary waveforms are generated from digital data points, which are stored in a dedicated
waveform memory. Each data point has a vertical resolution of 16/8 bits depending on the device
DAC mode (65,536/256 levels), i.e., each sample is placed on the vertical axis with a resolution of
1/65,536 or 1/256. The Proteus unit supports two DAC modes. In the first mode, all 16 vertical
resolutions bits are used. In the second mode, only 8 bits (the MSBs) are fed to the Digital-to-
Analog Converter. Proteus memory capacity can be, depending on the model and memory
options, of 1 GS, 2 GS, 4 GS, 8 GS, and 16 GS.

Each horizontal point has a unique address; the first being 00000 and the last depending on the
memory option. In cases where smaller waveform lengths are required, the waveform memory
can be divided into smaller segments.

When the instrument is programmed to output arbitrary waveforms, the clock samples the data
points (one at a time) from address 0 to the last address. The rate at which each sample is played
back is defined by the sample clock rate parameter.

Arbitrary waveforms must first be loaded into the instrument's memory. Correct memory
management is required for best utilization of the arbitrary memory. An explanation of how to
manage the arbitrary waveform memory is given in the following paragraphs.

Arbitrary Memory Management

The arbitrary memory in comprised of a finite length of words. The maximum size arbitrary
waveform that can be loaded into memory depends on the option that is installed in your
instrument.

Waveforms are created using small sections of the arbitrary memory. The memory can be
partitioned into smaller segments (up to 64K) identified by a number and different waveforms
can be loaded into each segment, each having a unique length. Minimum segment size is 1024
(2.5 GSa/s) or 2048 points (9 GSa/s) and can be increased by increments of 32 points (2.5 GSa/s)
or 64 points (9GSa/s). Information on how to partition the memory, define segment length and
download waveform data to the Proteus unit is given in the following paragraphs. The arbitrary
waveform commands are listed in Table x-y. Factory defaults after *RST are shown in the Default
column. Parameter range and low and high limits are listed, where applicable.

Arbitrary Waveform Memory is arranged in one single bank for P1282, P2582 and P9482 and in
two equal size banks for P1284, P2584, P9494, and P9082. Bank #1 is shared by CH1 and CH2 in
all the Proteus models except for the P9082, where it is attached to CH1. Bank #2 is shared by CH3
and CH4 in all the 4-channel Proteus models except for the P9082, where it is attached to CH2.
Segments defined when some channel is selected will be also available to the other channel
sharing the same memory bank. If both channels must use the same waveform, there is no need
to define two segments containing the same waveform and both can be associated to the same
segment number and they can access waveform data simultaneously and asynchronously without
any limitation.

Confidential | 122

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

Short and Fast Segments

There is an especial type of segment (“short segments” and “fast segments”) that are stored
totally (short) or partially (fast) in the FPGA internal memory which are designed for fast switching
and sequencing. These segments can be much shorter than the ones stored in the regular
waveform memory. For the 2.5 GSa/s (or less) units, the minimum length of fast segments is 32
points while for the 9.0 GSa/s units, minimum length is 128 points. Short Segments and Fast
segments do not need to be specified differently as the first 128 segment numbers are reserved
for them. This means that users must take care of assigning shorter segments and those requiring
very fast switching and jumping to those specific segment numbers.

9.1 :TRACe[:DATA](?)
[<offset>]#<header><binary_block>

Description

This command will download waveform data starting from the specified offset to the Proteus
waveform memory. Waveform data is loaded to the Proteus using high-speed binary data
transfer. High-speed binary data transfer allows any number of 8-bit bytes to be transmitted in a
message. This command is particularly useful for sending large quantities of data. As an example,
the next command will download to the generator an arbitrary block of data of 1,024 points

TRACe #42048<binary_block>

This command causes the transfer of 2,048 bytes of data (i.e. 1,024 waveform 16-bit samples) into
the active memory segment. The data (header plus binary block) is formatted according to the
IEEE-488.2 standard for Definite Length Arbitrary Block. The <header> is interpreted this way:

e The ASCII "#" (0x23) designates the start of the binary data block.

e "4" designates the number of digits in ASCII format that follow representing the binary data
block size in bytes.

e "2048" is the number of bytes to follow.
e <binary_block> Represents waveform data

The query form of the command may specify the offset and the length of the expected data (both
in bytes) as arguments separated by commas. Offset must be specified if expected data is
specified. When no offset is specified, returned waveform data will start with the first sample in
the target segment. When no length of expected data is specified, the remaining contents of the
segment will be transferred.

The optional offset parameter makes feasible updating a section of a segment or the transfer of
waveform binary data in chunks that are more manageable by the application software in the
control computer memory. It also helps to break one of the limitations of the IEEE-488.2 Definite
Length Arbitrary Block format. As the number of digits to specify the binary block size is one (1-
9), the maximum number of bytes that can be transferred through a single :TRACE command
would be 999,999,999. This number is much shorter than the maximum waveform size. When the
intended size of the waveform to be transferred is larger than this, multiple transfers with the
right offset parameters can be used to overcome the format primary limitation.

The generator accepts waveform samples as either 8-bit, sent as one-byte word, or 16-bit
unsigned integers, which are sent in two-byte words. Therefore, the total number of bytes may
be equal to or twice the number of data points in the waveform. For example, 20,000 bytes are
required to download a waveform with 10,000 points in the 16-bit format, and 10,000 bytes in

Confidential | 123

@maan ELECTRONICS Proteus Programming Manual Rev.1.4

the 8-bit format. The IEEE-STD-488.2 definition of Definite Length Arbitrary Block Data format is
demonstrated in Figure x-y.

For the waveform data made of 16-bit words, however, programmers may choose to prepare the
data in two bytes and arrange to download these two bytes in a sequence (low byte followed by
high byte). There are some facts you should be aware of before you start preparing the data:

1. Waveform data points have 16-bit unsigned integer values (0x0000 to OxFFFF) or 8-bit
unsigned integer values (0x00 to OxFF).

2. For the 16-bit sample format, data point range is 0 to 65,535 decimal for the Proteus.
0x0000 corresponds to -Amplitude/2 +offset and OxFFFF corresponds to Amplitude/2
+offset. Point 32,768 corresponds to offset setting.

3. For the 8-bit sample format, data point range is 0 to 255 decimal for the Proteus. 0x00
corresponds to -Amplitude/2 +offset and OxFF corresponds to Amplitude/2 +offset. Point
128 corresponds to offset setting.

Complex waveform data (1/Q) to be used while the generator works in the DUC (Digital Up-
Converter) mode, is handled in a very similar way. However, | and Q waveforms must be
sometimes stored in the same segment in the waveform memory with some specific formats
depending on the DUC mode. See chapter 5.9 [:SOURce]:IQModulation
{NONE |HALF|ONE|TWO}(?), page 81.

Marker data is transferred trough a different command (see :MARKer:DATA). Data format can be
selected by the user independently of the DAC working mode in the target Proteus unit through
the :TRAC:FORM command. However, the transferred data may be modified by the Proteus unit
receiving the data depending on the DAC working mode. This is the behavior of the Proteus unit
depending on the specific model and DAC working mode:

e P128X, P258X, and P948X (Sclk < = 2.5GS/s): Waveform data is always stored in the internal
waveform memory as 16-bit unsigned integers. Downloading 8-bit integers will cause the
Proteus unit to fill up the MSB with all ‘0.

e P9082, P948X (Sclk >2.5GS/s), 1X interpolation factor: Waveform data is always stored as 8-
bit unsigned integers in the internal waveform memory. Downloading 16-bit waveform data
will cause the Proteus unit to round the MSB to the nearest integer depending on the
contents of the LSB, that will be discarded.

e P9082, P948X (Sclk >5GS/s), 2X interpolation factor: Waveform data is always stored as 8-
bit unsigned integers in the internal waveform memory. Downloading 16-bit waveform data
will cause the Proteus unit to round the MSB to the nearest integer depending on the
contents of the LSB, that will be discarded.

e P948X (Sclk <= 9GS/s), 4X interpolation factor: Waveform data is always stored as 16-bit
unsigned integers in the internal waveform memory. Downloading 8-bit integers will cause
the Proteus unit to fill up the MSB with all ‘0.

e P9082, all the other DAC modes: Waveform data is always stored in the internal waveform
memory as 16-bit unsigned integers. Downloading 8-bit integers will cause the Proteus unit
to fill up the MSB with all ‘0’.

Confidential | 124

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

e All models, IQ Mode: Waveform data is always stored as 16-bit sample pairs (1&Q).
Waveform information, in this mode, is composed by a series of interleaved I/Q samples
(11, Q1, 12, Q2,...In, Qn) applied simultaneously to the DUC. The way the 1Q waveforms are
downloaded is set through the :TRACe:FORMat command. I/Q Waveforms can be
downloaded together in an interleaved fashion, or independently, as separate | and Q
downloads depending on the IQ mode. See chapter 5.9 [:SOURce]:IQModulation
{NONE | HALF | ONE [TWO}(?), page 81.

Parameters

Name Range Type Default Description

[<offset>] 0, <seg_len> |Numeric(int) |0 Expressed in bytes. The position of the first
sample to be transferred. Use this for editing
the waveform and / or multiple transfer
downloads. The offset is in bytes of wave data.
Use an offset that is a multiple of 64 for
performance reasons.

< header > Numeric(int) Contains information on the size of the binary
block that contains waveform coordinates.

< binary_block > Binary Block of binary data that contains waveform
data points (vertical coordinates), as explained
above. Use a data size that is a multiple of 64
for performance reasons.

Response

Will upload (read) waveform data starting from the specified offset from the Proteus waveform
memory. Note to use a comma after the offset.

Example
Command :TRAC 64#42048<binary block>
Query :TRAC? 64, 2048

9.2 :TRACe:FORMat{ <U16 | US>}(?)

Description

Set the resolution of the user waveform data that is to be transferred to the Proteus to unsigned
16/8-bit. This command does not modify the internal sample size (see :TRACe:DATA command),
just the size of the downloaded data.

Parameters

Name Type Default Description
<ul6 > Discrete ule6 Unsigned 16 bit.
<U8> Discrete U8 for P908x |Unsigned 8 bit.
Response

The Proteus unit will return the data format.

Example
Command : TRAC:FORM Ulé6

Confidential | 125

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Query : TRAC : FORM?

9.3 :TRACe:MEMory(?)< offset_in_wave-
points>#<header><wave-data>

Description

Write waveform data to the arbitrary-memory space starting from the specified offset.
The query format is:

:TRAC:MEMory? [<offset in wave-points>,]<size in wave-points>.

This command (or query) is the same as

:TRACe[:DATA] [<offset-in-bytes-of-wave-data>] #<binary-header><binary-
data>

except that the offset, in case of : TRACe :MEMory, is from the beginning of the memory-space
rather than the beginning of memory of the selected segment. This command ca be used to write
or read multiple segments at once.

Parameters

Name Range Type Default Description

<offset_in_wave- |Up to total |Integer (int) The position of the first sample to be

points > waveform transferred. Use this for transferring large

memory. amount of data in multiple transfer

downloads. The offset is in bytes of wave-data.

<#theader><wave- Refer to 9.1 :TRACe[:DATAI(?)

data> [<offset>]#<header><binary block>, page 123.

Response

Returns the waveform data from specified location.

Example
Command :TRAC:MEM 64#42048<binary block>
Query :TRAC:MEM? 64,1024

9.4 :TRACe:SEGMents[:DATA] [<first segment
number>,]J#<header><binary_block>

Description

Delete the previous definition, if any, of all the designated N segments of the selected channel
(no sample information is actually deleted) and define N consecutive new segments (no query).
The N segment-lengths, expressed in bytes of wave-data, are specified by the binary-block which
consists of N uint64 values (8N bytes). The new segments are allocated, one after the other, from
the beginning of the arbitrary-memory space.

Parameters

Name Range Type Default Description

[<first segment Numeric(int) |1 Defines the first segment to start from.
number>]

Confidential | 126

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Name Range Type Default Description

< header > Numeric(int) Contains information on the size of the binary
block that contains segment lengths.

<binary_block> |1 - 64k Numeric(int) The binary data consists of N uint64 values
that define the lengths in wave-points of N
segments

Example

Command :TRAC:SEGM #42048<binary block>

9.5 :TRACe:SEGMents:FILE[:NAMe]
#i<header><binary_block>

Description

This command will identify the file path storing the waveform data information for further
transfers to/from the unit’s memory. The file path is passed as a binary-block.

Parameters

Name Type Description

<header> <discrete> The first digit in ASCII following the ‘#’ character is the
number of digits to follow. The following digits specify the
length of the target file full path name in ASCII.

<binary_block> String Full path name for the file in ASCII coded as an unsigned
short integer array.

Example

Command :TRAC:SEGM:FILE #220my_ segment_table.seg

9.6 :TRACe:SEGMents:FILE:OFFSet <offset in bytes>(?)

Description
Set the start offset inside the file in bytes.

Parameters

Name Range Type Default Description

< offset in bytes > Integer (int) |0 Set the start offset inside the file in bytes.
Response

Returns the start offset inside the file in bytes.

Example
Command :TRAC:SEGM: FILE: OFFS 28
Query :TRAC: SEGM: FILE : OFFS?

Confidential | 127

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

9.7 :TRACe:SEGMents:FILE:LOAD[[<first segment
number>,],<number of segments>]

Description

This command will load the segment table data from the file defined by the
:TRACe: SEGM: FILE:NAME command to the Proteus unit memory. If the first segment is not
specified, then the default segment is 1.

Parameters

Name Type Default Description

[<first segment Integer |1 Defines the first segment to start from. Optional argument,

number>] default is 1.

<number of segments> |Integer |-1 (until The binary data consists of N uint64 values that define the
last lengths in wave-points of N segments
segment)

Example

Command :TRAC:SEGM:FILE:LOAD 12,128

9.8 :TRACe:FILE[:NAME]#<header><binary_block>

Description

This command will identify the file path storing the waveform data information for further
transfers to/from the unit’s memory. The file path is passed as a binary-block

Parameters

Name Type Description

<header> <discrete> The first digit in ASCII following the ‘#’ character is the
number of digits to follow. The following digits specify the
length of the target file full path name in ASCII.

<binary_block> String Full path name for the file in ASCII coded as an unsigned
short integer array.

Example

Command :TRAC:FILE #210wave_1l.wav

9.9 :TRACe:FILE:OFFSet< offset in bytes>(?)

Description
Set the start offset inside the file in bytes.

Parameters

Name Range Type Default Description

< offset in bytes >|Up to total Integer (int) |0 Set the start offset inside the file in bytes.
waveform
memory.

Confidential | 128

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
Returns the start offset inside the file in bytes.

Example
Command :TRAC:FILE:OFFS 28
Query :TRAC:FILE:OFFS?

9.10 :TRACe:FILE:DESTination{SEGMent | MEMory}(?)

Description

Use this command to set the destination to load/store the file data.

Parameters

Name Type Default Description

< SEGMent > Discrete SEGM The selected (programmable) segment.
< MEMory > Discrete The arbitrary memory space.
Response

The Proteus unit will return the destination to load/store the file data.

Example
Command :TRACe :FILE:DEST MEM
Query :TRACe : FILE : DEST?

9.11 :TRACe:FILE:LOAD[<offset>,<size in wave-points>]

Description

This command will load the waveform data from the file defined by the :TRACe:FILE:NAME
command to the Proteus unit memory. If the offset and the number of wave-points are not
specified, then the whole segment is written. No query.

Parameters
Name Type Description
<offset> Integer Offset in the segment in wave-points.
<size> Integer Size in wave-points.
Example
Command :TRAC:FILE:LOAD 12,128

9.12 :TRACe:FILE:STORe[<offset>,<size>]

Description

This command will save waveform data from the Proteus unit to the file defined by the
:TRAC:FILE:NAME command. If the offset and the number of wave-points are not specified,
then the whole segment is read. No query.

Confidential | 129

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters
Name Type Description
<offset> Integer Offset in the segment in wave-points.
<size> Integer Size in wave-points.
Example
Command :TRACe:FILE:STOR 1,1280

9.13 :TRACe:STReaming:MODE {FILE|DYNamic}(?)

Description
This command will set or query the target type of streaming mode.

Parameters

Name Type Default Description

< FILE > Discrete Dynamic The waveform data is streamed from a file.

<DYNamic> Discrete The waveform data is generated continuously by an
APl and streamed to the Proteus.

Response

The Proteus will return FILE or DYNamic.

Example
Command :TRAC:STR:MODE FILE
Query : TRAC:STR:MODE?

9.14 :TRACe:STReaming:STATe{OFF|ON|0|1}?)

Description

This command will set or query the state of the streaming functionality. Only for units with
installed streaming option (STM).

Parameters

Name Type Default Description

OFF Discrete 0 Disable streaming.
ON Discrete Enable streaming.
Response

The Proteus will return 1 if streaming is on, or 0 if streaming is off.

Example
Command :TRAC:STR ON
Query : TRAC:STR?

Confidential | 130

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

9.15 :TRACe:DEFine[:SIMPle]
[<seg_number>,]<seg _length>(?)

Description

Use this command to specify a new segment including its length.

Parameters

Name Range Type Default Description

<seg_number> 1-64k Numeric (int) |1 Segment number to be defined. The segment-
number is optional (for backward
compatibility).

<seg_length> See device |Numeric (int) Length in samples. Length will be rounded to

specification the nearest valid length lower or equal to

<seg_length> if greater than the minimum
valid segment size.

Response

The Proteus unit will return the segment number currently selected and its size separated by
commas.

Example
Command :TRAC:DEF 54, 1024
Query : TRAC:DEF?

9.16 :TRACe:DEFine:LENGth?

Description
Query only. Returns the length in wave-points of the selected (programmable) segment.

Response

The Proteus unit will return the length in wave-points of the selected (programmable) segment in
ASCII format.

Example
Query :TRAC:DEF: LENG?

9.17 :TRACe:ZERO[:SEGMent] [<segment number>]

Description

Zero the markers and waveform data of specified single segment (no query). The segment-number
is optional. If it is not given then the current segment is zeroed.

Parameters

Name Type Description

< segment-number > |Integer Segment number in the device waveform memory to be
processed.

Confidential | 131

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :TRAC:ZERO 100

9.18 :TRACe:ZERO:ALL

Description
This command will zero all the arbitrary-memory space of the selected channel's DDR (no query).

Example
Command :TRAC:ZERO:ALL

9.19 :TRACe:DELete[:SEGMent] <seg-number>

Description

This command will delete the predefined segment from the working memory.

Parameters
Name Range Type Description
< seg-number> 1 to 64k Numeric(int) Select the segment number to be deleted.
Example
Command :TRAC:DEL 1

9.20 :TRACe:DELete[:SEGMent]:ALL

Description
Delete all segments of the programmable channel's DDR.
Example

Command :TRAC:DEL:ALL

9.21 :TRACe:SELect[:SEGMent] <seg_number>(?)

Description

Use this command to specify the segment to be selected. Do not confuse it with the selected-
segment for playback (:FUNCtion:MODE:SEGMent).

Parameters

Name Range Type Default Description

<seg_number> |1-64k Numeric (int) |1 Segment number to be defined.
Response

The Proteus unit will return the segment number currently selected and its size separated by
commas.

Example
Command :TRAC:SEL 54

Confidential | 132

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Query : TRAC:SEL?

9.22 :TRACe:SELect:SOURce{BUS | EXTernal | ADC | DCT
1?)

Description

Use this command to set or query the source of the segment select command. This defines from
where the select command is expected to be received, causing a waveform segment change. Using
the BUS option, waveforms can be selected using remote commands only. The EXT option
transfers the control to a connector in the front panel that allows dynamic selection of the active
waveform segment. Using the external waveform control, one can dynamically select a waveform
from a preprogrammed list of waveforms. Using the ADC option, waveforms can be selected by
the digitizer trigger. The transition characteristics from waveform segment to another is
programmed using the TRAC:SEL:TIM command.

Parameters

Name Type Default Description

BUS Discrete BUS Defines that waveform segments will be switched only
when a remote command has been received.

EXTernal Discrete Defines that the segment control is transferred to
sequence control connector. The connector has 8 bits
of parallel control lines that can switch between up to
256 segments.

ADC Discrete Source for segment selection (for playback) is by the
ADC trigger (if this option is supported).

DCT Discrete Source for segment selection (for playback) is by the

Future Release daisy-chain-trigger.

Response

The Proteus unit will return BUS, EXT, ADC or DCT depending on the present segment jump
setting.

Example
Command :TRAC: SEL: SOUR DCT
Query : TRAC: SEL: SOUR?

9.23 :TRACe:SELect:TIMing{ EVENTually | IMMediate}(?)

Future Release

Description

Use this command to set or query the timing characteristics of the trace select command. This
defines how the generator transitions from waveform to waveform. Use the eventually option to
let the waveform complete before it jumps to the next waveform. Applications that require an
unconditional jump can use the immediate option, where the generation of the current waveform
is aborted and the new waveform is started immediately thereafter. This command affects the

Confidential | 133

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

segment transition timing, regardless of if the segment control is from remote or from the rear
panel connector.

Parameters

Name Type Default Description

<EVENtually> Discrete EVEN Defines that when a new waveform segment is
selected, the transition to the new waveform will
occur only when the current waveform has reached its
end point.

<IMMediately> Discrete Defines that when a new waveform segment is
selected, the current waveform will be aborted and
the transition to the new waveform will occur
immediately, without waiting for the current
waveform to reach its end points.

Response

The Proteus will return EVEN or IMM, depending on the current segment jump timing setting.

Example
Command :TRAC:SEL:TIM IMM
Query :TRAC:SEL:TIM?

9.24 :TRACe:FREE?

Description

Query only. Query the available waveform memory in the DDR including biggest fragment. Ask
for the current behavior of this command as it should give the biggest section of contiguous data
so users can define a new segment of equal or shorter length than that. Additionally, it could
return a second number with the total free memory.

Response

The Proteus unit will return the available waveform memory.

Example
Query : TRAC:FREE?

9.25 :TRACe:FRAG?

Description

Query only. Query the fragmentation level of the of the selected channel's memory-space.
Fragmentation can occur after some existing segments are deleted. Waveform and marker data
for a give segment is always stored in contiguous sections of the memory. This means that
unused sections of the memory can only be reused by a new segment if its length is equal or
shorter than the largest unused section.

Response
The Proteus unit will return the fragmentation level (between 0 and 1).

Confidential | 134

@meen ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Query : TRAC:FRAG?

9.26 :TRACe:DEFRag

Description
This command will defragment the arbitrary-memory space of the selected channel DDR.

Example
Query :TRAC:DEFR

Confidential | 135

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10 Digitizer Commands

This group is used to control the multiple-channel digitizer in the Proteus AWT (Arbitrary
Waveform Transceiver) models and handle the waveforms captured by it and their respective
parameters. Using these commands, you can define acquisition size and upload some or all
waveforms from the acquisition memory.

Acquiring Waveforms

Acquired waveforms are digital, quantized versions of the analog waveforms at the input(s) of the
digitizer, which are stored in a dedicated waveform memory. Quantization of the incoming signal
is made in two dimensions, time and amplitude. Each one of the elements in the acquisition
memory is a sample taken at a constant speed known as sampling rate or frequency. The
amplitude for each sample point is quantized as a finite digital word. The size of the digital word
is known as the vertical resolution and it is expressed in bits (so there are 2N quantization levels,
where N is the vertical resolution in bits). The Proteus’ digitizer has a vertical resolution of 12 bits
(4,096 levels), i.e., each sample is placed on the vertical axis with a precision of 1/4096. The
Proteus digitizer supports two acquisition modes. In the first mode, all the acquisition channels
are available to acquire independent waveforms up to 2.7GSa/s. In the second mode, half of the
channels can be used to capture waveforms up to 5.4GSa/s.

The acquisition memory is shared with the AWG section of Proteus so the available sizes for both
sections are interlocked. Acquisition memory can be made of a single waveform or by a
multiplicity of them grouped as an array of waveforms. Each element of the array is called a frame.

Acquisitions are defined in terms of sampling rate, record length (number of samples to be
captured for each trigger event), and position (the location of the closest sample to the trigger
event). Multiple frame acquisitions (or Multi-Frame) require the definition of the number of
frames to be captured.

Acquisitions can be performed in the Real mode, where samples are stored in the acquisition
memory directly after digitization, and in the Complex model, where samples go through a real-
time Digital Down-Converter (DDC) so a region in the frequency domain around a central or carrier
frequency is down-converted to a complex (I/Q) waveform after complex mixing, filtering, and
decimation.

Captured waveforms can be read at any moment by the control software and acquisition does not
need to be stopped. However, typically acquisitions are read synchronously when acquisitions are
completed so the Proteus unit should be queried about the status of the current acquisition to
avoid missing or mixing waveform information.

10.1 :DIGitizer:[:SELect]{ DIG1|DIG2}(?)

Description

This command will set the active Digitizer in the Proteus for future programming command
sequences. Subsequent commands affect the selected Proteus Digitizer only. This command is not
required for PXI modules.

Parameters
Name Type Default Description
DIG1 Discrete DIG1 Sets the active device to Digitizer #1

Confidential | 136

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Name Type Default Description
DIG2 Discrete Sets the active device to Digitizer #2
Response

The Proteus unit will return 0 (DIG1) or 1 (DIG2) depending on the present active digitizer setting.

Example
Command :DIG DIG2
Query :DIG?

10.2 :DIGitizer:MODE{DUAL|SINGIle}(?)

Description

This command will set the operation mode for the active digitizer in a Proteus device. Dual channel
mode allows for the simultaneous acquisition of two waveforms at sampling rates up to 2.7GSa/s.
The single-channel mode supports one channel (CH1)at twice the sampling rate (5.4GSa/s).

Parameters

Name Type Default Description

DUAL Discrete DUAL Sets the mode to dual channel.
SINGle Discrete Sets the mode to single channel.
Response

The Proteus unit will return DUAL or SING depending on the operation mode for the current active
digitizer.

Example
Command :DIG:MODE SING
Query :DIG:MODE?

10.3 :DIGitizer:CHANnel[:SELect]{ CH1|CH2}(?)

Description

This command will set the active channel for the currently selected digitizer in a Proteus device
for future programming command sequences. Subsequent commands affect the selected digitizer
channel only. Selecting CH2 while in the single channel operation mode will have no effect.

Parameters

Name Type Default Description

CH1 Discrete CH1 Sets the active channel to Channel #1
CH2 Discrete Sets the active channel to Channel #2
Response

The Proteus unit will return 1 (CH1) or 2 (CH2) depending on the present active channel setting.

Example
Command :DIG:CHAN CH2

Confidential | 137

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Query :DIG:CHAN?

10.4 :DIGitizer:CHANnel:STATe{ DiSabled | ENABled}(?)

Description

This command will enable acquisition for the active channel in the currently selected digitizer in
a Proteus device. Non enabled channels will not capture any waveform.

Parameters

Name Type Default Description

DISabled Discrete DISabled Active channel will be disabled
ENABIled Discrete Active channel will be enabled
Response

The Proteus unit will return DIS or ENAB depending on the present active channel setting.

Example
Command :DIG:CHAN:STAT ENAB
Query :DIG:CHAN:STAT?

10.5 :DIGitizer:CHANnel:RANGe{
HIGH | MEDium | LOW}(?)

Description

This command will set the voltage range for the active channel for the currently selected Digitizer
in a Proteus device. There are three different sensitivity settings: HIGH (500mVpp),
Medium(400mVpp), and LOW (250mVpp).

Parameters

Name Type Default Description

HIGH Discrete HIGH Sets the active channel to the high range
MEDium Discrete Sets the active channel to the medium range
LOW Discrete Sets the active channel to the low range
Response

The Proteus unit will return HIGH, MED or LOW depending on the present active channel setting.

Example
Command :DIG:CHAN:RANG MED
Query :DIG:CHAN:RANG?

10.6 :DIGitizer:CHANnNel:OFFSet< offset_level >(?)

Description

Use this command to set or query the DC offset level for the active channel for the currently
selected digitizer in a Proteus device. The DC offset level is defined in units of volts.

Confidential | 138

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Range Type Default Description

< offset_level > |-2.0to+2.0 |Numeric 0 Set the offset level in units of volts. Each input
can be set to a different low- and high-level
setting. The offset level is calibrated when the
output impedance of the signal source is 50 Q.

Response

The Proteus will return the present channel offset value. The returned value will be in standard
engineering format. For example: 0.1 V would be returned as 100e-3. Positive numbers are
unsigned.

Example
Command :DIG:CHAN:OFFS 0.5
Query :DIG:CHAN:OFFS?

10.7 :DIGitizer:-DDC:MODE{REAL|COMPIlex}(?)

Description

This command will set the path for the data acquired by the digitizer channel. There are two
different data paths: REAL and COMPlex. The real path is the default setting of the digitizer. This
setting acquires the signal and stores directly it in the DDR.

When set to complex mode the signal is demodulated, filtered, decimated so it is down-converted.
This is done using the integrated digital downconverter (DDC) in the ADC chip. There are two DDC
entities, one for each channel of the digitizer. The complex mode is available only in dual channel
mode or in single channel mode for sampling rates <= 2.7GS/s, and forces decimation X16. For
future reference the DDC of each channel will be labelled according to the channel number, DDC1
and DDC2. The DDC mode is common to both channels. In Single mode, both DDCs can be applied
concurrently to Channel 1,

Parameters

Name Type Default Description

REAL Discrete REAL Set data path to REAL

COMPlex Discrete Set data path to Complex and enable demodulation
and digital down conversion

Response

The Proteus unit will return REAL or COMP depending on the present setting.

Example
Command :DIG:DDC:MODE REAL
Query :DIG:DDC:MODE?

Confidential | 139

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10.8 :DIGitizer:DDC:DECimation{ NONE | X1| X4 | X16}?

Description

Set the decimation factor when working in complex mode. In real mode decimation is X1. In
complex mode user can set X4 or X16. X4 is mandatory for loopback mode and it cannot be set
out of this mode. When querying the decimation factor, the possible responses are X1|X4|X16.

Parameters

Range Type Default Description

NONE Discrete X16 No decimation factor, X1. (Real Mode)

X1 Discrete No decimation factor, X1. (Real Mode)

X4 Discrete Set decimation factor to X4. (Complex Mode and
Loopback Mode)

X16 Discrete Set decimation factor to X16. (Complex Mode and not
Loopback Mode)

Response

The Proteus unit will return the decimation factor applied to the signal acquired.

Example
Command :DIG:DDC:DEC X16
Query :DIG:DDC:DEC?

10.9 :DIGitizer:DDC:BIND{ OFF | ON |0 |1 }(?)

Description

Use this command to enable or disable binding of the digitizer channels. It is only effective in the
Digitizer’s Single mode. When the state of the BIND is ON then only channel 1 is active and is the
source for DDC1 and DDC2. Sampling Rate must be <= 2.7GS/s.

When the state is OFF channel 1 is the source of DDC1 and channel 2 is the source of DDC2. Note:
Only for :MODE:DUAL.

Parameters

Range Type Default Description

0-1 Discrete 0 When set to 0, channel binding is OFF. When set to 1,
channel binding is ON.

Response

The Proteus will return 1 if the channel binding state is set to ON, or 0 if set to OFF.

Example
Command :DIG:DDC:BIND ON
Query :DIG:DDC:BIND?

Confidential | 140

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10.10 :DIGitizer:DDC:CFRequency<1]|2> <carr_freq>(?)

Description

Use this command to set or query the carrier frequency for the selected DDC <1|2>. Where CFR1
sets DDC1 and CFR2 sets DDC2.

Parameters

Name Range Type Default Description

< carr_freq > 0 Hz to max ADC [Numeric 1e9 Will set the carrier frequency of the selected
sclk DDC.

Response

The Proteus unit will return the present carrier frequency value. The returned value will be in
standard engineering format (for example: 1 GHz would be returned as 1e9, positive numbers are
unsigned).

Example
Command :DIG:DDC:CFR1 1.0e9
Query :DIG:DDC:CFR1?

10.11 :DIGitizer:DDC:PHASe<1|2> {<phase in degrees>}(?)

Description
Use this command to set or query the NCO phase (in degrees) of the selected DDC.

Parameters

Name Range Type Default Description

<phase in 0to 360 Numeric 0 Will set the NCO phase (in degrees) of the
degrees> selected DDC.

Response

The Proteus unit will return the NCO phase.

Example
Command :DIG:DDC:PHAS1 45
Query :DIG:DDC:PHAS1?

10.12 :DIGitizer:DDC:CLKSource{ DIG | AWG}(?)

Description

This command will set the operation mode for the clock source of the digitizer sampling clock.
When set to AWG the clock source is from the AWG part of the instrument and results in the
synchronization of frequency and phase of the NCO in the generator and the NCO of the digitizer
so coherent operation between the generator and the digitizer can be obtained. This setting links
the SCLK of the generator and digitizer within certain ranges as can be seen in the table below.
Sampling rate for the Generator must be exactly 1X, 2X, 4X, or 8X the sample rate for the Digitizer
to implement coherent operation of the DUC and the DDC.

Confidential | 141

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Table 10-1 Digitizer and Generator Sampling Clock Ranges for Synchronized Operation

Digitizer Sampling Clock (MSa/s) | Generator Sampling Clock (MSa/s)
1000-1125 1000-1125 2000-2250 4000-4500 8000-9000
1125-1600 1125-1600 2250-3200 4500-6400
1600-2000 1600-2000 3200-4000 6400-8000
2000-2250 2000-2250 4000-4500 8000-9000
2250-2700 2250-2700 4500-5400
Parameters
Name Type Default Description
DIG Discrete DIG Sets the CLK source to be the digitizer
AWG Discrete Sets the CLK source to be the generator
Response

The Proteus unit will return DIG or AWG depending on the operation mode for the current active
digitizer.

Example
Command :DIG:DDC:CLKS AWG
Query :DIG:DDC:CLKS?

10.13 :DIGitizer:ACQuire[:FRAMes]:DEFine<num_of frame
s><frame_length> (?)

Description

Use this command to define memory-space and frame length for the digitizer channels with state
enabled. If the digitizer mode is DUAL, then the frame-length should be a multiple of 48 samples,
and size of the frame-header is 48 samples (it is not part of the frame-length, but it is added to
the memory size). If the digitizer mode is SINGle, then the frame-length should be a multiple of
96 samples, and the size of the frame-header is 96.

In case of dual-mode, the memory for channell of the digitizer is in DDR1 and for channel 2 in
DDR2. In case of single-mode the memory for the single channel is divided half-by-half between
DDR1 and DDR2. Number of frames and frame length are common to all digitizer channels in a
given module.

Note

The DDR1 is used by AWG channel 1 for P908X models and by AWG channels 1 and 2 if
for all other models. DDR2 is used by AWG channel 2 for P908X models and by AWG
channels 3 and 4 for all other models.

The user should balance between the memory reserved for the digitizer, and the memory for the
segments of the AWG (48 samples of the digitizer are equivalent to 64 bytes of AWG waveform
data).

Confidential | 142

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Range Type Default Description

<num_of_frames>{1-wave form |Numeric (int) |1 Number of frames (segments) to capture.

memory

<frame_length> [nx48/nx96 Numeric (int) |4800 Length of each frame for a single acquisition.
length-granularity: 48 in case of dual-channel
mode, 96 in case of single-channel mode. n=
any integer number >= 100

Response

The Proteus unit will return the frame length and number of frames currently set for the current
channel.

Example
Command :DIG:ACQ:DEF 1,48000
Query :DIG:ACQ:DEF?

10.14 :DIGitizer:ACQuire[:FRAMes]:FREE
Description
This command will free the memory allocated on the DDR.

Example
Command :DIGitizer:ACQuire:FREE

10.15 :DIGitizer:ACQuire[:FRAMes]:CAPTure[:SELECT]<1st
frame>,<num-frames> (?)

Description

Use this command to capture a number of frames (waveforms) starting from specified first frame
and up to first frame plus number of frames. This command allows to capture a limited range of
frames under software control.

Parameters

Name Range Type Default Description

<1st frame> 1 - Number of|Numeric (int) |1 Start the capture from specified frame.
frames

<num-frames> 1 -Number of |Numeric (int) |-1 Number of frames (segments) to capture.
frames Number of frames -1 means to the last frame.

Response

The Proteus unit will return the specified first frame and the number of frames currently set for
the selected channel.

Confidential | 143

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :DIG:ACQ:CAPT 10,1004
Query :DIG:ACQ:CAPT?

10.16 :DIGitizer:ACQuire:[FRAMES]:CAPTure:ALL

Description
Use this command to capture all frames from frame number 1 to the last frame.
Example

Command :DIG:ACQ:CAPT:ALL

10.17 :DIGitizer:ACQuire[:FRAMes]:MARKer{OFF|ON|0]|1}
(?)

Description

If the marker-mode is enabled, then the digitizer is set to the external trigger input. In this mode
the LSB of the captured data is a marker that holds the state of the capturing trigger signal. When
the marker bit rises for the first time after the pre-trigger section of the frame, it marks the sample
at which the trigger signal was received.

Parameters

Range Type Default Description

0-1 Discrete 0 Sets the marker outputs on and off.
Response

The Proteus will return 1 if the marker output is ON, or 0 if the marker output is OFF.

Example
Command :DIG:ACQ:MARK ON
Query :DIG:ACQ:MARK?

10.18 :DIGitizer:ACQuire:STATus?

Description
Query only. Get the status of the acquisition.

Parameters in the Response

Range Type Description

<frame-done> Discrete 0 - No frame acquired
1 — At least one frame acquired

<all-frames-done> |Discrete 0 — No all frames acquired
1 - All frames acquired

<pulse-counter- Discrete 0 — Not busy
busy> 1 - Busy

Confidential | 144

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Range Type

Description

<frames-count> Integer

Number of frames acquired so far.

Response

The Proteus will return the status of the acquisition. The format of the answer is
<frame-done>,<all-frames-done>,<pulse-counter-busy>,<frames-count>

Example

Query

:DIG:ACQ:STAT?

10.19 :DIGitizer:ACQuire:AVERage:STATe{ OFF | ON |0 |1

1?)

Description

The average function of the digitizer enables the user to perform time domain averaging of up to
16M captures. The result is stored in single frame in the DDR and consists of the sum of the
number of captures as defined by the :DIG:ACQ:AVER:COUN command. The length of the frame
is as defined by the user and is limited to a maximum of 10244 samples where each sample is up

to 28bits long.

Use this command to enable or disable averaging of the captured frames. When set to 0 the
averaging is OFF and when set to 1 the averaging is ON.

Note that the average function only works in certain clock ranges of the digitizer depending on
the DDC Mode. In addition, the sampling clock of the generator part is derived from the digitizer
sampling clock according to a specific mathematical formula. The sampling clock ranges, and
formula are summarized in table 10.2 below.

Table 10-2 Average Mode Digitizer and Sampling Clock Settings

DDC Complex Mode

DDC Real Mode

Valid digitizer clock range

2500MSa/s — 2700MSa/s

5000MSa/s — 5400MSa/s

Corresponding generator
sampling clock

DIG_SCLK % 3.2
=>8000MSa/s — 8640MSa/a

DIG_SCLK x 1.6
=>8000MSa/s — 8640MSa/a

For example, when setting the digitizer sampling clock (SCLK) to 5100MSa/s in real mode, the
generator sampling clock must be set to 5100x1.6 = 8160MSa/s.

Parameters

Range Type Default Description

0-1 Discrete 0 0 — Averaging is OFF.
1 - Averaging is ON.

Response

The Proteus will return 1 if the averaging is set to ON, or 0 if set to OFF.

Example
Command

Query

:DIG:ACQ:AVER:STAT ON
:DIG:ACQ:AVER:STAT?

Confidential | 145

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10.20 :DIGitizer:ACQuire:AVERage:COUNt<# frames to
average>

Description

Set the count of how many frames to average. The minimum number of frames to average is 2,
and the maximum is 16M.

Parameters
Name Range Type Default Description
<#framesto | 2to 16M Numeric 1000 How many frames to average.
average>

Response

The Proteus will return the present count value.

Example
Command :DIG:ACQ:AVER:COUN 100
Query :DIG:ACQ:AVER:COUN?

10.21 :DIGitizer:ACQuire:ZERO[:SELect]<1st frame>,<num
frames> <fill value>

Description

This command will set the value of the data of the selected frames in the acquisition memory to
the “fill value”. This command enables to actively wipe the data in the frames to a defined value.

Parameters

Name Type Description

<1st frame> Integer First frame in the Proteus acquisition memory to be set to fill
value.

<num frames> Integer Number of frames in the Proteus acquisition memory to be set
to a defined value.
-1 — Means to the last frame.

<fill value> Fill-value is 12bits. Delete frame data.

Example

Command :DIG:ACQ:ZERO 1,15,2047

10.22 :DIGitizer:ACQuire:ZERO:ALL <fill value>

Description

This command will set the value of the data of all frames in the acquisition memory to the “fill
value”. This command enables to wipe the data in all frames to a defined value

Confidential | 146

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters
Name Type Description
<fill value> Integer Fill-value is 12bits. Deletes the original frame data.
Example
Command :DIG:ACQ:ZERO:ALL 0

10.23 :DIGitizer:FREQuency[:RASTer]{<sclk>| MAXimum |
MINimum}(?)

Description

Use this command to set or query the sample clock frequency of the digitizer section in units of
samples per second (Sa/s).

Parameters
Name Range Type Default Description
<sclk > 1.6e9 to Numeric 2.00E+09 |Will set the sample clock frequency of the
5.4e9 (single digitizer in units of Sa/s. The sample clock
mode) command can be programmed with resolution
800e6 to up to 5 digits.
2.7€9 (dual
mode)
<MINimum> Discrete Will set sample clock to min SCLK. 1.6e09 Sa/s
for single channel mode and 800e06 Sa/s for
dual channel mode
<MAXimum> Discrete Will set sample clock to max SCLK. 5.4e09 Sa/s
for single channel mode and 2.7e09 Sa/s for
dual channel mode
Response

The Proteus unit will return the present sample clock frequency value for the digitizer. The
returned value will be in standard scientific format with up to 6 digits (for example: 1 GHz would
be returned as 1e9. Positive numbers are unsigned).

Example
Command :DIG:FREQ 5.0e9;
Query :DIG:FREQ?

10.24 :DIGitizer:FREQuency:SOURce{INTernal | EXTernal}(?)

Description

Use this command to select or query the source of the sample clock generator of the digitizer. The
clock source can be set to external or internal. Make sure that a valid clock is applied to the
external clock input before you change the option to external. Note that the sample clock
generator is applied to both channels.

Confidential | 147

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Range Type Default Description

INTernal Discrete INT Selects the internal clock generator as the main clock
source.

EXTernal Discrete Activates the external sample clock input. A valid signal
must be applied the SCLK IN connector on the digitizer
board. Observe the input level and limitations before
connecting an external signal to the external sample
clock input.

Response

The Proteus will return INT or EXT, depending on the current sample clock source.

Example
Command :DIG:FREQ:SOUR EXT
Query :DIG:FREQ:SOUR?

10.25 :DIGitizert:INITiate[:STATE]{OFF|ON|0|1}(?)

Description

Use this command to start or stop acquiring waveforms with the digitizer. Use the :DIG:ACQ:STAT
to find out about the status of the acquisition after issuing this command.

Parameters

Range Type Default Description

0-1 Discrete 0 0 — Waveform acquisition will stop acquisition for the
current digitizer.
1 — Waveform acquisition will start acquisition for the
current digitizer.

Response

The Proteus will return 1 if the acquisition state is set to ON, or O if set to OFF.

Example
Command :DIG:INIT ON
Query :DIG:INIT?

10.26 :DIGitizer:TRIGger[:IMMediate]

Description

Use this command to force a trigger event for the digitizer when trigger source is set to CPU.

Example
Command :DIG:TRIG

Confidential | 148

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10.27 :DIGitizer:TRIGger:SOURce{ CPU |EXT|CH1|CH2|
TASK1 | TASK2 | TASK3 | TASK4| MR1|MF1| MR2|
MF2}(?)

Description

Use this command to set or query the source of the trigger that initiates the capturing of the
selected digitizer channel.

Parameters

Name Type Default Description

CPU Discrete EXT By SCPI Command :DIG:TRIG:IMM.

EXTernal Discrete The external-trigger of the digitizer connected to the
ITRIG IN connector of the digitizer slot.

CH1|CH2 Discrete Self-trigger from channel 1 or channel 2 of the digitizer.

TASk[n] Discrete Trigger created by task from the nth channel of the AWG
(of the same module).

MR[1]2] Discrete Raise of the marker-bit on channel 1/2 of the digitizer.
The marker is raised when a trigger signal is detected in
the TRIG IN

MF[1/2] Discrete Fall of the marker-bit on channel 1/2 of the digitizer.

Response

The Proteus will return CPU| EXT| CH1| CH2| TASK1| TASK2| TASK3]|
TASK4|MR1|MF1|MR2|MF2 depending on the current source for acquisition triggers.

Example
Command :DIG:TRIG:SOUR CPU
Query :DIG:TRIG: SOUR?

10.28 :DIGitizer:TRIGger:LEVel<1|2>{<trigger_level>}(?)

Description

Use this command to set the voltage threshold Level<1|2> of the external-trigger of the digitizer.
When using EDGE or GATE type trigger Levell is set as the trigger threshold. For a window type
trigger WEDGE and WGATE both trigger levels are set as explained in the :DIGitizer:TRIGger:TYPE{
EDGE | GATE | WEDGe | WGATe | CUSTom }(?) command.

Parameters

Name Range Type Default Description

<1|2> -5.0V to +5.0V |Numeric ov Programs the trigger level <1|2> in volts.
Response

The Proteus will return the present trigger level set for the current digitizer.

Confidential | 149

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :DIG:TRIG:LEV2 -0.2
Query :DIG:TRIG:LEV2?

10.29 :DIGitizer:TRIGger:SELF[:LEVel]<trigger_level>(?)

Description

Use this command to set the threshold voltage level for the self-trigger for the selected channel
of the digitizer.

Parameters

Name Range Type Default Description

<trigger_level>Low Range: - |[Numeric ov Programs the self-trigger level in volts.
125mV to
+125mV

Medium
Range: -
200mV to +
200mV.

High Range: -
250mV to
+250 mV

Response

The Proteus will return the present self-trigger level set for the current digitizer.

Example
Command :DIG:TRIG:SELF -0.2
Query :DIG:TRIG:SELF?

10.30 :DIGitizer:TRIGger:TYPE{ EDGE | GATE | WEDGe |
WGATe | CUSTom }(?)

Description

Use this command to set or query the type of trigger that will be derived from the external trigger
of the digitizer.

Parameters

Name Type Default Description

EDGE Discrete EDGE Sets LEV1 as the trigger threshold. Slope setting will set
the positive and negative edge values.

GATE Sets LEV1 as the trigger threshold. Slope setting will set
whether gate starts when crossing above (POS) or below
the level (NEG).

WEDGe Window Edge. Defines a window where once both the
window start and stop conditions are met a trigger is
initiated and capture begins. Can be combined with

Confidential | 150

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Name Type Default Description
width, refer to
:DIGitizer:TRIGger:WIDTh<trigger event width>(?)

WGATe Window Gate. Defines a window where once the
window start condition is met, gate trigger rises and
capture begins. The capture ends once the window stop
condition is met and the gate trigger falls.

CUSTom Future Release.

Response

The Proteus unit will return EDGE | GATE | WEDGe | WGATe | CUSTom depending on the trigger

type set for the active digitizer.

Example
Command

Query

:DIG:TRIG:TYPE GATE

:DIG:TRIG:TYPE?

10.31 :DIGitizer:TRIGger:CONDition{ GREater| SHORter}(?)

Description

This command will setup the valid timing condition, greater (or equal) or shorter, for time-related

trigger events.

Parameters

Name Type Default Description

GREater Discrete GREater Time is greater or equal form valid trigger
SHORter Time is shorter for valid trigger
Response

The Proteus unit will return GREa or SHOR depending on the present active channel setting.

Example
Command

Query

:DIG:TRIG:COND SHOR

:DIG:TRIG:COND?

10.32 :DIGitizer:TRIGger:SLOPe{POS | NEG }(?)

Description

This command will set which trigger edge to trigger on when :TYPE is set to EDGE.

Parameters

Name Type Default Description

POS Discrete POS Sets the positive or rising edge as the valid trigger
condition.

NEG Discrete Sets the negative or falling edge as the valid trigger
condition.

Confidential | 151

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus unit will return POS, or NEG depending on the present active trigger slope setting.

Example
Command :DIG:TRIG:SLOP POS
Query :DIG:TRIG:SLOP?

10.33 :DIGitizer:TRIGger:WINDow:STARt { <threshold-level
index (1/2)>, POSitive | NEGative }(?)

Description

This command will set the window start edge. The window start is defined by a combination of
trigger level, 1 or 2, and trigger polarity, POS or NEG. Therefore, there are 4 possible combinations
for defining the window start:

1. Level 2, POS
2. Level 2, NEG
3. Level 1, NEG

4. Level 1, POS
This is valid for the external trigger source only.

Parameters

Name Type Default Description

<threshold-level |Discrete Set trigger LEVel 1 or 2 as the threshold level for the

index (1/2)> starting edge.

POSitive Discrete Set the polarity of the trigger signal. When positive
trigger signal must cross from low to high.

NEGativ Discrete Set the polarity of the trigger signal. When negative
trigger signal must cross from high to low.

Response

The Proteus unit will return trigger level 1, or 2 and POS, or NEG depending on the present window
start edge trigger setting.

Example
Command :DIG:TRIG:WIND:STAR 1,POS
Query :DIG:TRIG:WIND:STAR?

Confidential | 152

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10.34 :DIGitizer:TRIGger:WINDow:STOP { <thrshold-level
index (1/2)>, POSitive | NEGative }(?)

Description

This command will set the window stop edge. The window stop is defined by a combination of
trigger level, 1 or 2, and trigger polarity, POS or NEG. Therefore, there are 4 possible combinations
for defining the window stop:

1. Level 2, POS
2. Level 2, NEG
3. Level 1, NEG

4. Level 1, POS
This is valid for the external trigger source only.

Parameters

Name Type Default Description

<threshold-level |Discrete Set trigger level 1 or 2 as the threshold level for the stop

index (1/2)> edge.

POSitive Discrete Set the polarity of the trigger signal. When positive,
trigger signal must cross the trigger level from low to
high.

NEGativ Discrete Set the polarity of the trigger signal. When negative,
trigger signal must cross the trigger level from high to
low.

Response

The Proteus unit will return POS, or NEG depending on the present window stop edge trigger start
setting.

Example
Command :DIG:TRIG:WIND:STOP 1,POS
Query :DIG:TRIG:WIND:STOP?

10.35 :DIGitizer:TRIGger:WIDTh<trigger_event_width>(?)

Description

Use this command to set or query the valid trigger width when trigger condition width is enabled.
This setting is valid external trigger source and WEDGE trigger type only. Use the :DIG:TRIG:COND
command to define this width as the maximum (SHORter) or minimum (GREater).

Parameters

Name Range Type Default Description

<trigger_event_width>(0, 0 to 15 Numeric le-06 Time reference for time-qualified trigger
types. Resolution in 1/ADC_SCLK.

Confidential | 153

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return the present trigger width set for the current digitizer.

Example
Command :DIG:TRIG:WIDT 100e-09
Query :DIG:TRIG:WIDT?

10.36 :DIGitizer:TRIGger:HOLDoff< holdoff_time>(?)

Future Release

Description

Set the holdoff of the external trigger for the selected channel. Incoming trigger will be ignored
during the holdoff period.

Parameters
Name Range Type Default Description
< holdoff > external-trigger: | Numeric 0 Set the holdoff of the selected external-
from 0 to 16382 trigger of the selected channel.
(14-bit ADC).
Internal-trigger:
only 0 (no
holdoff
Response

The Proteus will return the present external trigger holdoff value in units of seconds.

Example
Command :DIG:TRIG:HOLD 10e-06
Query :DIG:TRIG:HOLD?

10.37 :DIGitizer:TRIGger:DELay[:EXTernal]<delay_time>(?)

Description

Use this command to set the time delay of the external trigger of the digitizer. The resolution is
in units of the digitizer's sampling clock:

e 10 sample clocks in case of dual-channels mode.
e 20 sample clocks in case of single-channel mode.

Parameters

Name Range Type Default Description

<delay_time> 0to 6.0677e- |Numeric 0 Set the time delay of the externa trigger of the
5 digitizer.

Response

The Proteus will return the present delay time value in units of second.

Confidential | 154

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :DIG:TRIG:DEL le-06
Query :DIG:TRIG:DEL:EXT?

10.38 :DIGitizer:TRIGger:AWG:TDELay<task-trigger
delay>(?)

Description

Set the time-delay of the task-trigger from the active AWG channel to the digitizer. For Task-
trigger, delay can be set for each TASK list, not for each digitizer channel, so the :INST:CHAN
command must be sent before using this command so the target task is selected. The currently
selected Digitizer channel is not relevant for this command.

Parameters

Name Range Type Default Description

<task-trigger 0to 10s Numeric Set the time-delay of the task-trigger from the
delay> selected AWG channel to the digitizer.
Response

The Proteus will return the task-trigger delay.

Example
Command :DIG:TRIG:AWG:TDEL 5.0
Query :DIG:TRIG:AWG:TDEL?

10.39 :DIGitizer:PRETrigger< pre-trigger length in
samples>(?)

Description

Set the position of the trigger inside the frame, or in other words, how many samples that arrive
before the trigger that starts the frame, should be saved in the frame. In case of dual-channel
mode, the length must be a multiple of 48 samples. In case of single-channel mode the length
must be a multiply of 96 samples. Zero means no pre-trigger.

Note
The trigger will be ignored if not all the pre-trigger samples have been acquired.

Parameters

Name Range Type Default Description

<pre-trigger Otosize of |Integer 0 Set the position of the trigger inside the frame.
length in frame

samples>

Response

The Proteus will return the pre-trigger length in samples.

Confidential | 155

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Example
Command :DIG:PRET 96
Query :DIG:PRET?

10.40 :DIGitizer:DATA:TYPE< FRAMes | HEADers | BOTH
>(?)

Description

This command sets the type of data that will be read from the digitizer memory. It is possible to
select between reading only the frame data, only the frame header or both. If reading frames with
headers, then each frame is followed by its header.

The “HEADER” field is divided to sub-fields of 32bit each. The content of the fields is:
Field 1 [31:0] — trigger location in the frame. Used for PRE-trigger feature.

Field 2 [63:32] — gate mode last address

Field 3 [75:64] — min ADC level in the current frame (12 bits)

Field 4 [87:76] — max ADC level in the current frame (12 bits)

Field 5 [151:88] — time stamp (64 bits)

Parameters

Name Type Default Description

FRAMes Discrete Reads the frame data only

HEADers Discrete Reads the frame header only

BOTH Discrete Reads frame data followed by the header
Response

The Proteus will return the data type selected.

Example
Command :DIG:DATA:TYPE FRAM
Query :DIG:DATA:TYPE?

10.41 :DIGitizer:DATA:SELect <ALL | FRAMes | CHUNk>(?)

Description

Use this command to set what should be read from the digitizer captured data.

Parameters

Name Type Default Description

ALL Discrete All frames should be read.

FRAMes Discrete One or more frames should be read.

CHUNk Discrete Chunk of data from specified frame (the :TYPE is
ignored in this case) should be read.

Confidential | 156

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return the selected read type.

Example
Command :DIG:DATA:SEL FRAM
Query :DIG:DATA:SEL?

10.42 :DIGitizer:DATA:FRAMes <1st-frame>,<num-
frames>(?)

Description

Use this command to select which of the captured frames to read when the :DIG:DATA:TYPE FRAM
has been issued.

Parameters

Name Range Type Default Description

<1st-frame> 1to num- Integer 1 Set the first frame to transfer.
frames

<num-frames> |1 to num- Integer 1 Set the number of frames to transfer.
frames, -1
means to the
last frame.

Response

The Proteus will return the settings of the 1st-frame and the num-frames.

Example
Command :DIG:DATA:FRAM 4,16
Query :DIG:DATA: FRAM?

10.43 :DIGitizer:DATA:CHUNk <frame-no>,<offset in
samples>,<read size in samples>(?)

Description

Use this command to a acquire data-chunk from the specified frame of the selected channel when
the :DIG:DATA:TYPE CHUNK has been issued.

Parameters

Name Range Type Default Description

<frame-no> 1to num- Integer 1 Set the number of the frame to acquire.
frames

< offset in 0 to frame Integer 0 Set the offset in samples of the frame to

samples > length acquire.

<read size in 0 to chunk Integer 48 Set the number of samples to read.

samples> size

Confidential | 157

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return the parameter settings:

#<binary-data header><binary-data block>

Example
Command :DIG:DATA:CHUN 4,16,512
Query :DIG:DATA:CHUN?

10.44 :DIGitizer:DATA:READ(?)

Description
Use this command to acquire the selected frames from the selected digitizer channel.

Response

The Proteus will return #<binary-data header><binary-data block>.

Name Type Description

<binary_data_header> Discrete The first digit in ASCII following the ‘#’ character is the

number of digits to follow. The following digits specify the
length of the waveform data to be read in bytes.

< binary data_block > Bytes Sample values made of 16-bit unsigned int in Real mode, 32-
bit unsigned int in the Complex mode, and 48-bit unsigned
int for the Average mode.

Example
Query :DIG:DATA:READ?

10.45 :DIGitizer:DATA:SIZE(?)

Description
Query the size in bytes of the data that was selected for read.

Response

The Proteus will return the number of bytes of the data selected for read.

Example
Query :DIG:DATA:size?

10.46 :DIGitizer:DATA:FNAMe #<header><file-path as
binary data>

Description

Use this command to set the file-path for the :STORe command.

Confidential | 158

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Type Description

<header> Discrete The first digit in ASCII following the ‘# character is the
number of digits to follow. The following digits specify the
length of the target file full path name in ASCIL.

< file-path as binary data > String Full path name for the file in ASCII coded as an unsigned
short integer array.

Example

Command :DIG:DATA:FNAM #212captured.dat

10.47 :DIGitizer:DATA:STORe <offset>

Description

Use this command to store the specified data from the captured memory of the selected channel
of the digitizer in the specified offset of the predefined file (no query).

Parameters
Name Type Description
<offset> Integer Offset in bytes inside the file.
Example
Command :DIG:DATA:STOR 512

10.48 :DIGitizer:DATA:FORMat { <U16 | F32 | F64}(?)

Description
Set the format of the data that will be sent to the user.

Parameters

Name Type Default Description

<U16 > Discrete ule Each 12-bits sample is contained in an uint16 (LSB is
marker if marker-mode is enabled).

<F32> Discrete Each sample is converted to 32-bit floating-point value
- marker is lost.

< F64> Discrete Each sample is converted to 64-bit floating-point value
- marker is lost.

Response

The Proteus unit will return the data format.

Example
Command :DIG:DATA:FORM F64
Query :DIG:DATA:FORM?

Confidential | 159

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10.49 :DIGitizer:LOOPback[:STATe]{ OFF|ON|0|1}(?)

Description
Enable/disable loopback state for the active channel.

Parameters

Name Type Default Description

OFF Discrete OFF Disable loopback state for the active channel.
ON Discrete Enable loopback state for the active channel.
Response

The Proteus will return the selected state ON or OFF.

Example
Command :DIG:LOOP OFF
Query :DIG:LOOP?

10.50 :DIGitizer:LOOPback:DELay< delay>(?)

Description

Set the time delay between the digitizer channel and the corresponding loopback generator
channel. Values are from 8 to 2047, where each unit corresponds to a 16*DAC_SCLK_Period delay.

Parameters

Name Type Default Description

<delay> Integer 8 Set the time delay between the digitizer channel and
the corresponding loopback generator channel.

Response

The Proteus will return the selected parameters.

Example
Command :DIG:LOOP:DEL 512
Query :DIG:LOOP:DEL?

10.51 :DiGitizer:LOOPback: SYNC

Description

No query. Use this command to initiate a sync trigger to synchronize all loopback channels.

Example
Command :DIG:LOOP:SYNC

Confidential | 160

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

10.52 :DIGitizer:LOOPback:IQRotation< scale>,<phase>(?)

Description

Use this command to set the scale and phase of the IQ rotation added to the output signal of the
active generator channel. Scale can have values between 0 to 3, and phase can have values
between 0 to 360.

Parameters

Name Type Default Description

<scale> Integer 1 Set the scale of the I1Q rotation added to the output
signal of the active generator channel.

<phase Integer 0 Set the phase of the IQ rotation added to the output
signal of the active generator channel.

Response

The Proteus will return the selected parameters separated by a comma.

Example
Command :DIG:LOOP:IQR 2,180
Query :DIG:LOOP:IQR?

10.53 :DIGitizer:LOOPback:OVERflow(?)

Description

Query if the configured operation resulted in an overflow and as a result the signal after
processing was clipped. Response is 1 if signal was clipped or 0 if not clipped.

Response

The Proteus will return 1 if signal was clipped or 0 if not clipped.

Example
Query :DIG:LOOP:OVER?

10.54 :DIGitizer:PULSe[:DEFine] {<INTernal |
EXTernal>,<FIXed | GATed>,<window_width(?)

Description

Use this command to set the pulse-counter parameters of the digitizer.

Parameters

Name Type Default Description

INTernal |[EXTernal |[Discrete INT Define pulse-counter trigger-source parameters.

FIXed | GATed Discrete FIX Define pulse-counter window-type parameters.

window_width Numeric 0.1 Define pulse-counter window-width in seconds
parameter. Range from 12.5ns to 15s.

Confidential | 161

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return the selected parameters.

Example
Command :DIG:PULS INT,GAT,4.5
Query :DIG:PULS?

10.55 :DIGitizer:PULSe:COUNt?
Description
Query only. It reads the current contents of counters attached to each channel.

Response

The Proteus unit will return the contents of <counter 1>,<counter 2>.

Example
Query :DIG:PULS:COUN?

Confidential | 162

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

11 Digital Signal Processing Commands
11.1 Introduction DSP

This group is used to control the signal processing path of the data acquired by the digitizer and
handle the decision-based waveform generation. Using these commands, you can define which
processing blocks to use, what data to store, and which waveform to generate based on the result
from various calculations on the acquired signal.

The Proteus FPGA has real time digital signal processing capabilities so the user can reduce the
data transfer to the control PC and perform the data processing at a much higher rate on the
FPGA. This can significantly reduce the application run time and feedback control latency.

These commands are relevant only for those Proteus instruments equipped with the AWT and the
FPGA PROG option.

Configuring the signal processing chain

The DSP commands give the user the ability to enable, disable and configure various blocks along
the signal processing chain. When approaching the task of configuring the blocks it is necessary
to understand the data flow and the dependencies between the blocks. In the figure below is a
block diagram illustrating the various blocks and their connectivity. The following paragraphs will
describe the overall approach that needs to be taken when configuring the DSP blocks.

The first selection that must be made is whether to route the signal through the complex path or
real path.

Confidential | 163

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

‘ buc DAC r.wrri\’urﬂv‘
F— l DDR1
""_77\7 ’7
ADC > DDC
—i DDR2 ‘
1 511?;,5 | MATH DECISION
REAL COMPLEX IN_FFTQ1 FFT M BLOCK BLOCK
PATH PATH Q1 IN_FFTI |
Q1 FIR
51 Taps
on Mi1
= 51F”}':ps DSP1 DSP1
oQ1i}- +—{MQ1 |
1Q2
Q2 FIR
=1'Tdps 012 M2

DSP2 DSP2

DBUG [pomod oQ2 MQ2
+FIR 1a3 :
1Q4 Kernel
+ "
Dec x10) oI5 MI5 ‘
DSP5 DSP5
Q5 Kernel 5
[Ker og o0 Mas
Dec x10) .

1Q4

1Q PAIR
SWITCH

13x 11

Ol10 MI10 1

DSP10

Q13 DSP10
0Q10; MQ10

1Q13

Kernel
+

Becx10)

Figure 11-1 Proteus Digital Signal Processing Block Diagram

Complex Path

When a signal is received at the input of the digitizer it can either be routed to the COMPLEX PATH
or the REAL PATH. In the complex path, after being sampled, the signal is down converted and
demodulated using the digital down converter (DDC) integrated in the Analog to Digital Converter.
There are two DDC entities in the ADC chip, one for each of the two channels, DDC1 for channel
1 and DDC2 for channels 2, or when working in DDC bind mode both are configured to work with
channel 1 thus enabling to de-multiplex two frequencies on one signal.

Note
The complex path is only available in the dual channel mode of the digitizer.

Each DDC outputs an | and Q signal (11, Q1, 12, Q2) that can then be filtered using the FIR block.
The FIR block consists of a 51 tap FIR filter that can be configured for each signal.

Real Path

When selecting the real path, the DDC is bypassed and the sampled data is routed to the DSP 1Q
demodulation block. The 1Q demodulation block offers 10 different demodulation entities so it
can handle up to 10 frequencies multiplexed on one signal. For each entity, user defines a kernel
for the | and Q pair. For an example on how to create the Kernel you can refer to the
teproteus_functions.py file on the Tabor Github page (https://github.com/Tabor-Electronics) or
contact Tabor online support. After the kernel the signal is decimated by 10. In addition, there is
a block (DBUG) that implements a sine and cosine Kernel with a 51 tap configurable filter that can
be used for debugging purposes.

Confidential | 164

Proteus Programming Manual Rev. 1.4

@TABOR ELECTRONICS

Data Storage

Once the user has selected the data path, complex or real, it is necessary to configure which data
should be stored on the Proteus memory. The Proteus on-board memory consists of 2xDDR4
SODIMMs. User can select to store different data at different points along the data path according
to the table below.

Table 11-1 Possible Data Storage Configurations

Complex Mode Real Mode
DDR1 DDR2 DDR1 DDR2
SUSIES G SIS Stores digitizer Stores digitizer
. channel 1 channel 2
Direct channel 1 sampled channel 2
sampled |Q data | sampled IQ data - sampled data
after DDC after DDC P
Stores DSP6-10
Stores DSP1-5 1Q and debug 1Q
data after the data after the
DSP N/A N/A demodulation and demodulation
g decimation block and decimation
o
b block
Stores the Stores DDC1 1Q
11,Q1 h
output (result) (11,Q01) data and | Stores the output T
DDC2 1Q (12,Q2) (result) of the FFT
of the FFT and debug 1Q
data after the performed on the
performed on . . . data after the
FFT . configurable FIR input selected in .
the input . , demodulation
. filter in the FIR the :FFT:IN . .
selected in the . and decimation
FET:IN block. These are | command . In this block
co'mm;amd then routed as mode, DBUG
) DSP1 and DSPé6.

FFT and MATH Operations

After selecting what data to store, the user can configure if any mathematical operations are to
be done on the sampled data. There are three modules, the first is for scaling and shifting, the
second is for cross correlation and third is for averaging. The idea is that every | and Q input can
be scaled and shifted via a constant provided by the user. In addition, cross correlation can be
done after the scaling and shifting. Finally, a rolling average can be performed on any of the
parameters including the cross correlation.

Decision

Finally, the user must configure how a decision is made and the outcome. In the decision block
there are 10 decision modules DEC1 to DEC 10 which correspond to DSP1 to DSP10. Thus, when
in complex mode only DEC1 and DEC6 are relevant and in real mode all ten are relevant.

The decision stage is used to both compress the dataflow (e.g. converting a time-series of
numbers into a single 0 or 1 for readout output) and to generate the required trigger signals for
feedback. Thus, decision can be made based on a threshold logic or by using a state classifier or
state vector machine (SVM).

The threshold module simply compares a given input stream with a value specified by the user to
output a 0 or 1 if the value is less or greater than that supplied. The resulting 1-bit number can be

Confidential | 165

@meoa&scmomcs Proteus Programming Manual Rev. 1.4

used to conditionally jump between two tasks later in the feedback loop. Similarly, in the SVM
module the user programs the coefficients and the SVM outputs a 3 bit number with the value of
the discrete state that corresponds to the given input bitstream. The user can define which
segment to generate for each of the 8 possible states the SVM can output. The decision module
can be seen in the figure below.

s
L

01

Figure 11-2 Decision Block Module

Confidential | 166

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Notes when using decision blocks
e Frame size in digitizer must be larger than decision frame size.

e When in REAL mode since kernel is limited to 1024 samples (after decimation) then
digitizer frame size is limited to 1024 samples.

e When in complex mode there is no limit on digitizer frame size however since
decision frame size is limited to 1024 samples only the first 1024 samples of the
digitizer will be used for decision.

11.2 :DSP:STORe{ DIRect | DSP | FFTOut }(?)

Description

Use this command to set or query what data will be stored in a DDR.
Note that the valid options are dependent on the DDC:MODE selected in the digitizer command
section. See chapter 10.7 :DIGitizer:DDC:MODE{REAL | COMPlex}(?). Refer to Table 11-1 Possible
Data Storage Configurations for details.

Complex Mode
Refer to 10.7 :DIGitizer:DDC:MODE{REAL|COMPlex}(?).

Parameters

Name Type Default Description

Direct Discrete DIR Stores the raw input data after the ADC down
conversion and demodulation. Data is saved as |Q data
before filtering. 1Q pair sourced in channel 1 is stored on
DDR 1 and IQ pair sourced in channel 2 is stored in
DDR2.

DSP Same as FFTOut.

FFTOut Stores the 1Q data after the FIR filter. DDR 1 stores the
output of the FFT performed on the input selected by
the :FFT:IN command. DDR2 stores two 1Q pairs, 1Q1
sourced from channel 1 and 1Q2 sourced from channel
2. When :DDC:BIND is set to ON then both IQ pairs are
sourced from channel 1.

These are then routed as DSP1 and DSP6.

Pay attention that in Complex mode when selecting DSP,
the frame size as defined in the ADC must be at least
4104 samples.

Real Mode
Refer to 10.7 :DIGitizer:DDC:MODE{REAL|COMPIlex}(?).

Pay attention that in real mode maximum frame size as defined in the ADC should not exceed
12384 samples, this contains 12 1Q pair entities, 10DSP, Debug and FFT.

Confidential | 167

@TABOR‘ ELECTRONICS

Proteus Programming Manual

Rev. 1.4

Parameters

Name Type Default Description

Direct Discrete DIR1 This stores the raw input data before the FPGA down
conversion and demodulation. Data is saved as raw
sample data.

DSP This stores the IQ data after the FIR filter. In this mode
there are ten IQ pairs, DSP1-10. DSP1-5 are sourced
from ADC channel 1 and DSP 6-10 are sourced from
channel 2. When DDC bind is set to ON, DSP1-10 are
sourced from channel 1. DDR1 stores time domain
samples of DSP1-5. DDR2 stores time domain samples of
DSP 6-10 as well as samples of the DBUG channel. The
DBUG path performs a traditional 1Q demodulation
which includes an extra 61 system clocks delay relative
to the DSPn path.

FFTOut In this mode DDR2 stores time domain samples of DSP
6-10 as well as samples of the DEBUG channel. DDR1
stores the output (result) of the FFT performed on the
output of the DBUG path. The time domain input signal
to the FFT is always the DBUG path. When FFT is
selected the frame size as defined in the ADC must be
exactly 12384 samples.

When FFTOut is selected the frame size as defined in the
ADC must be exactly 12384 samples.
Response
The Proteus unit will return DIR, DSP, or FFTO depending on the current parameter selected to be
stored.

Example

Command :DSP:STOR DIR
Query :DSP:STOR?

11.3

:DSP:lIQDemod:SELect{ DBUG | 1Q4 | 1Q5 | 1Q6 | 1Q7

1108 | 1Q9 | 1Q10 | 1Q11 | 1Q12 | 1Q13 }?)

Description

When in REAL mode this command will select which IQ pair demodulation block to configure.
DSP1 corresponds to 1Q4 up to DSP10 which corresponds to 1Q13.

Parameters

Name Type Default Description

DBUG Discrete DBUG Selects the DBUG block
Q4 Discrete Selects the 104 block
1Q5 Discrete Selects the 1Q5 block
106 Discrete Selects the 1Q6 block
1Q7 Discrete Selects the 1Q7 block

Confidential | 168

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Name Type Default Description

1Q8 Discrete Selects the 1Q8 block
1Q9 Discrete Selects the 1Q9 block
Q10 Discrete Selects the 1Q10 block
Q11 Discrete Selects the 1Q11 block
1Q12 Discrete Selects the 1Q12 block
1Q13 Discrete Selects the 1Q13 block
Response

The Proteus unit will return DBUG, 1Q4,...1Q13 depending on which block was selected.

Example
Command :DSP:IQD:SEL IQ4
Query :DSP:IQD:SEL?

11.4 :DSP:IQDemod:KERnel:COEFficient <sample
number>,<real>,<imaginary>(?)

Description

Use this command to write the real and imaginary parts of the specified sample in the kernel of
the selected 1Q pair. Range 10240 samples, each sample is 12 bit signed FIX 12_11 (11 bit for
fractional), real and imaginary take values between -1 to 1.

Parameters

Name Range Type Default Description

<sample 1to 10240 Integer The specified sample to edit
number>

<real > -1to1l Float Value of the real number
<imaginary> -1to1l Float Value of the imaginary number
Response

The Proteus will return the real and imaginary values of the specified sample number.

Example
Command :DSP:IQD:KER:COEF 5,0.5,-0.5
Query :DSP:IQD:KER:COEF? 5

11.5 :DSP:IQDemod:KERnel:DATA#<header><binary_bloc
k>(?)

Description

Use this command to write or read the | and Q kernel data of the selected IQ pair. The kernel data
must consist of 10240 samples, where each sample holds an | and Q value.

Confidential | 169

Proteus Programming Manual Rev. 1.4

@TABOR‘ ELECTRONICS

Parameters

Name Type Description

<header> Integer Contains information on the size of the binary block that
contains kernel data.

< binary block > binary Block of binary data that contains kernel data, as explained
above. Each sample is 4 bytes, 12 bit for | and 12 bit for Q.
data arrangement is 12 bit signed FIX 12_11,

Example
Command :DSP:IQD:KER:DATA #3408

Query :DSP:IQD:KER:DATA?

11.6 :DSP:FIR:SELect{ 11 | Q1 |12 | Q2 | DBUGI |

DBUGQ}(?)

Description

This command will select which FIR block to configure. When mode is Complex the complex data
path 1Q blocks are operational (11, 12, Q1, Q2) and in REAL mode the DBUG IQ blocks are
operational (DBUGI, DBUGQ).

Parameters

Name Type Default Description

11 Discrete 11 Selects the I1 FIR

Q1 Discrete Selects the Q1 FIR

12 Discrete Selects the 12 FIR

Q2 Discrete Selects the Q2 FIR
DBUG1 Discrete Selects the DBUGI FIR
DBUG2 Discrete Selects the DBUGQ FIR
Response

The Proteus unit will return 11, Q1, 12, Q2, DBUG1 or DBUG2 according to the selected FIR block

Example
Command

Query

11.7

Description

:DSP:FIR:SEL Q2

:DSP:FIR:SEL?

:DSP:FIR:BYPass{OFF|ON|0|1}(?)

Use this command in complex mode to set whether to bypass the FIR block.

Parameters
Range Type Default Description
0-1 Discrete 0 0 — FIR bypass is off.

1 - FIR bypass is ON.

Confidential | 170

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus will return 1 if the FIR block is bypassed, or 0 if it is not.

Example
Command :DSP:FIR:BYP ON
Query :DSP:FIR:BYP?

11.8 :DSP:FIR:LENGth(?)

Description
Query only. Queries the FIR (Finite Impulse Response) length (number of taps).

Response
The Proteus unit will return the length of the FIR applied to the signal acquired.
Example

Query :DSP:FIR:LENG?

11.9 :DSP:FIR: COEFficient <tap number>,<the value of
the specified tap>(?)

Description

Use this command to set the tap coefficient value by sending the index value of the desired
coefficient and its new value. Value is specified between -1 to 1 (FIX 24_23). The FIR has 51 taps.
Query returns the value of the coefficient specified by the index.

Parameters

Name Range Type Default Description

<tap number> |1to51 Integer Set the index value of the coefficient to edit.
< value of -1to1l Float Set the tap value of the selected tap.
specified tap >

Response

The Proteus will return the value of the specified tap.

Example
Command :DSP:FIR:COEF 1,0.5
Query :DSP:FIR:COEF? 1

11.10 :DSP:FIR:DATA#<header><binary_block>(?)

Description

Use this command to write or read the taps of the FIR as binary data, the FIR has 51 taps each tap
is FIX 24_23.

Confidential | 171

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Type Description

<header> Integer Contains information on the size of the binary block that
contains taps data.

< binary block > binary Block of binary data that contains taps data, as explained
above. Each tap value is specified between -1 to 1 (FIX
24 23)

Example

Command :DSP:FIR:DATA #3408

:DSP:FIR:DATA? 5

11.11 :DSP:FFT:INPut{ 1Q1 | 1Q2 |DBUG }(?)

Description

This command will select the input of the FFT. In case of real mode it is DBUG ; In case of complex
mode it is 1Q1 which is sourced at the ADC channel 1 or 1Q2 which is sourced at ADC channel 2.
When :DDC:BIND is set to ON then both 1Q pairs are sourced from channel 1.

When FFT is used the frame size as defined in the ADC must be exactly 12384 samples and the
FFT length is set to 1024.

Parameters

Name Type Default Description

1Q1 Discrete 1Q1 Select the input of the FFT to be 1Q1.
1Q2 Discrete Select the input of the FFT to be 1Q2.
DBUG Discrete Select the input of the FFT to be DBUG
Response

The Proteus unit will return 1Q1, IQlor DBUG depending on the selected FFT input.

Example
Command :DSP:FFT:INP IQ1
Query :DSP:FFT:INP?

11.12 :DSP:MATH:OPERation{ MI1 | MQ1 | MI2 | MQ2 |
MI3 | MQ3 |[MI4 |[MQ4 | MI5 [MQ5 | MI6 |[MQ6 |
MI7 | MQ7 | MIS|MQ8 | MI9 [MQ9 | MI10 |[MQ10
,<SCALe>,<OFFSet> }(?)

Description

Set the scale and offset of the specified affine transformation in the math-block for the selected
parameter. Scale value can be between -64 to 63, offset value between -8192 to 8191. MIX or
MQX corresponds to the appropriate DSPIX and DSPQX. Please note that when in complex mode

Confidential | 172

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

only MI1, MQ1 and MI3, MQ3 are available. MIX or MQX corresponds to the appropriate DSPIX
and DSPQX.

Parameters

Name Range Type Default Description

MI1 Discrete MI1 Set MI1 as the parameter for the math
operation

MQl Discrete Set MQ1 as the parameter for the math
operation

MI2 Discrete Set MI2 as the parameter for the math
operation

MQ2 Discrete Set MQ2 as the parameter for the math
operation

MI10 Discrete Set MI10 as the parameter for the math
operation

MQ10 Discrete Set MQ10 as the parameter for the math
operation

<scale> -64 to 63 Integer 1 Set the scaling factor that will be applied to
the selected parameter

<offset> -8192 to 8191 |Integer 0 Set the offset that will be applied to the
selected parameter

Response

The Proteus unit will return the selected parameter, the scale factor and offset value.

Example
Command :DSP:MATH:OPER MQ2,5,1
Query :DSP:MATH:OPER?

11.13 :DSP:MATH:OPERation:CLIP(?)

Description

Query only. Query if the configured operation resulted in an overflow and as a result signal was
clipped.

Response

The Proteus unit will return 1 if the signal was clipped and 0 if it was not clipped.

Example
Query :DSP:MATH:OPER:CLIP?

Confidential | 173

@meen ELECTRONICS Proteus Programming Manual Rev.1.4

11.14 :DSP:MATH:XCORrelation:LENGth<N>(?)

Description

Use this command to set the length of the cross correlation in samples. The length can range from
1to 1024 samples.

Parameters

Name Range Type Default Description

<N> 1to 1024 integer 1024 Set the length of the cross correlation in
samples.

Response

The Proteus will return the length of the cross correlation in samples.

Example
Command :DSP:MATH:XCOR:LENG 512
Query :DSP:MATH: XCOR : LENG?

11.15 :DSP:MATH:XCORrelation:SIGNal{ <MI1 | MQ1 |
MI2 | MQ2 | MI3 | MQ3 |MI4 |[MQ4 | MI5 |MQ5 |
MI6 |MQ6 | MI7 | MQ7 | MIS|MQ8 | MI9 |[MQ_9 |
MI10 |MQ10 }(?)

Description
This command will select the two signals on which to perform the cross correlation.
Note that when in complex mode only MI1, MQ1 and MI3, MQ3 are available.

Parameters
Name Type Default Description
MI1 | MQ1 | MI2 | |Discrete Mi1 Select the first signal for cross correlation

MQ2 | MI3 | MQ3
[MI4 |MQ4 | MI5
IMQ5 | MI6 |MQ6
| MI7 | MQ7 |
MI8|MQ8 | MI9
IMQ9 | MI10
IMQ10

MI1 | MQ1 | MI2 | |Discrete MQl Select the second signal for cross correlation
MQ2 | MI3 | MQ3
[MI4 |MQ4 | MI5
IMQ5 | MI6 |MQ6
| MI7 | MQ7 |
MI8|MQ8 | MI9
IMQ9 | MI10
IMQ10

Confidential | 174

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response

The Proteus unit will return the two signals for which the cross correlation is calculated as
specified by the command.

Example
Command :DSP:MATH:XCOR:SIGN MI2 6 MI3
Query :DSP:MATH:XCOR:SIGN?

11.16 :DSP:MATH:RAVG { MI1 | MQ1 | MI2 | MQ2 | MI3 |
MQ3 [MI4 [MQ4 | MI5 [MQ5 | MI6 [MQ6 | MI7 |
MQ7 | MIS|MQ8 | MI9 [MQ9 | MI10 |[MQ10
| XC,<N> }(?)

Description

This command will select the signal on which to perform the rolling average on as well as the
window size of the rolling average. Set the window size of the rolling average in values of 27n
where n=0,1...15. E.g. MI1 means n=1.

Parameters

Name Type Default Description

MI1 Discrete 0 Select the MI1 signal to perform the rolling average
on.

MQl Discrete Select the MQ1 signal to perform the rolling average
on.

MI10 Discrete Select the MI10 signal to perform the rolling average
on.

MQ10 Discrete Select the MQ10 signal to perform the rolling average
on.

XC Discrete Select the XC (cross correlation) calculation to perform
the rolling average on.

<N> Integer Set the window size (number of samples) of the rolling
average in values of 2*n where n=0,1...15.

Response

The Proteus unit will return the signal selected for the rolling average and the window size.

Example
Command :DSP:MATH:RAVG MQ2,8
Query :DSP:MATH:RAVG?

Confidential | 175

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

11.17 :DSP:DECision[:FEEDback]:MAPping{ <awg channel
number>,DEC1 | DEC2| DEC3 | DEC4 | DEC5 | DEC6
| DEC7 | DEC8 | DEC9 | DEC10 | XC } (?)

Description

This command will select which decision block affects the specified channel. Each decision block
holds the result of the corresponding FPGA DSP block, so that DEC1 to DEC10 correspond to DSP
1 to 10. Note that when in complex mode only DEC1, DEC6 and XC are relevant. To be used in
conjunction with the task destination parameter TASK:COMPoser[:DEFine]:DESTination DSIG.

When using decision blocks:
1. Frame size in digitizer must be larger than decision frame size.

2. When in REAL mode, since kernel is limited to 1024 samples (after decimation), then the
digitizer frame size is limited to 1024 samples.

3. Whenin complex mode there is no limit on digitizer frame size. However, since decision frame
size is limited to 1024 samples only the first 1024 samples of the digitizer will be used for

decision.

Parameters

Name Range Type Default Description

<awg channel 1to number |Integer 11 Set the AWG channel that will be affected by

number> of generator the decision.

channels

DEC1 Discrete Set the decision result that the AWG channel
will be waiting for to be DEC1.

DEC10 Discrete Set the decision result that the AWG channel
will be waiting for to be DEC10.

XC Discrete Set the decision result that the AWG channel
will be waiting for to be XC (cross correlation).

Response

The Proteus unit will return the decision result that the specified AWG channel will be waiting for.

Example
Command :DSP:DEC:MAP 2,DEC2
Query :DSP:DEC:MAP? 2

Confidential | 176

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

11.18 :DSP:DECision[:FEEDback]:CONDition{<awg-channel
number>,S1 | S2 |S3|S4| S5 | S6 | S7 | S8,
<segment number>}(?)

Description

This command will associate the state Sx of the decision block with the specified segment of the
specified AWG channel. This is used in conjunction with the task destination parameter DSP.
Whenever the Task destination is set to be DSP, the segment generated by that task is the one
associated with the relevant state as set by this command. For example DSP:DEC:COND 1,51,3
means that when the destination in channel 1 task is DSP, then segment 3 will be generated if the
result of the decision is S1. Note that a segment number must be defined for all states.

Parameters

Name Range Type Default Description

<awg-channel 1to number |Integer Set the AWG channel that will be affected by

number> of generator the decision.

channels

S1 Discrete Select S1 as the state of the decision block to
which the segment number will be associated
to.

S2 Discrete Select S2 as the state of the decision block to
which the segment number will be associated
to.

S3 Discrete Select S3 as the state of the decision block to
which the segment number will be associated
to.

sS4 Discrete Select S4 as the state of the decision block to
which the segment number will be associated
to.

S5 Discrete Select S5 as the state of the decision block to
which the segment number will be associated
to.

S6 Discrete Select S6 as the state of the decision block to
which the segment number will be associated
to.

S7 Discrete Select S7 as the state of the decision block to
which the segment number will be associated
to.

S8 Discrete Select S8 as the state of the decision block to
which the segment number will be associated
to.

<segment 1to last Integer Select the segment number that will be

number> defined associated with the selected channel and

segment state.

Confidential | 177

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response

The Proteus unit will return the segment number associated with the specified AWG channel and
state.

Example
Command :DSP:DEC:COND 2,S2,3
Query :DSP:DEC:COND? 2,S2

11.19 :DSP:DECision:FRAMe<the frame size for the
calculation>(?)

Description
Use this command to set the frame size of the calculation, range from 2 to 1024 samples.

Parameters

Name Range Type Default Description

< the frame size |2 to 1024 Integer 1024 Set the frame size for the calculation,
for the range from 2 to 1024 samples.
calculation >

Response

The Proteus will return the length of the frame size for the calculation in samples

Example
Command :DSP:DEC:FRAM 512
Query :DSP:DEC: FRAM?

11.20 :DSP:DECision:IQPath:SELect { DSP1 | DSP2 | DSP3 |
DSP4| DSP5| DSP6| DSP7| DSP8| DSP9| DSP10 }(?)

Description

This command will set which input path to configure. Note that when in complex mode only DSP1
and DSP3 are relevant.

Parameters

Name Type Default Description

DSP1 Discrete DSP1 Set DSP1 as the input path to configure.
DSP10 Discrete Set DSP10 as the input path to configure.
Response

The Proteus unit will return the selected DSP.

Example
Command :DSP:DEC:IQP:SEL DSP2

Confidential | 178

@TABOR‘ ELECTRONICS

Query

Proteus Programming Manual

:DSP:DEC:IQP:SEL?

Rev. 1.4

11.21 :DSP:DECision:IQPath:OUTPut{ THR | SVM }(?)

Description

This command will set the output of the selected IQpath. The result of the output is described
using 3 bits. When set to threshold the output is 0 or 1 and when set to SVM the output it is 0 to

7.

Parameters

Name Type Default Description

THR Discrete THR Set the threshold as the output of the selected IQpath.
SVM Discrete Set the SVM as the output of the selected IQpath.
Response

The Proteus unit will return the selected output.

Example
Command

Query

:DSP:DEC:IQP:0UTP?

:DSP:DEC:IQP:0OUTP THR

11.22 :DSP:DECision:IQPath:THReshold:LEVel { <N> }(?)

Description

Use this command to set the threshold level of the decision block (between -2423 and 2723 -1)

Parameters

Name Range Type Default Description

<N> -2723 and Integer 0 Set the threshold level of the decision
2723 -1 block

Response

The Proteus will return the threshold level

Example
Command

Query

:DSP:DEC:IQP:THR:LEV 512
:DSP:DEC:IQP:THR:LEV?

11.23 :DSP:DECision:IQPath:THReshold:INPut {1 | Q }(?)

Description

This command will select the input for the threshold decision.

Parameters

Name Type Default Description

| Discrete | Set | as the input for the threshold decision
Q Discrete Set Q as the input for the threshold decision

Confidential | 179

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus unit will return the selected input.

Example
Command :DSP:DEC:IQP:THR:INP I
Query :DSP:DEC:IQP:THR:INP?

11.24 :DSP:DECision:IQPath:LINE{1 | 2 | 3, <slope>, <y-
intercept>}(?)

Description

This command will set the slope and y intercept of the line equation (1, 2, 3) of the selected 1Q
Path. Slope value from -256 to 255, y-intercept value from -128 to 127

Parameters

Name Type Default Description

1 Discrete 1 Line equation 1.
2 Discrete Line equation 2.
3 Discrete Line equation 3.
<slope> integer 1 Slope
<y-intercept> Integer 0 Y-intercept
Response

The Proteus unit will return the selected input.

Example

Command :DSP:DEC:IQP:LINE 1,0.7,3

Query :DSP:DEC:IQP:LINE? 1

11.25 :DSP:DECision:IQPath:CLIP(?)
Description

Query only. Query if the configured operation resulted in an overflow and as a result signal was
clipped.

Response
The Proteus unit will return 1 if the signal was clipped and 0 if it was not clipped.

Example
Query :DSP:DEC:IQP:CLIP?

11.26 :DSP:DECision:XCORrelation: THReshold { <N> }(?)

Description

Use this command to set the threshold value of the cross correlation.

Confidential | 180

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Parameters

Name Range Type Default Description

<N> -2A23 and integer 0 Set the threshold level of the cross
2123 -1 correlation

Response

The Proteus will return the parameter settings the length of the cross correlation in samples

Example
Command :DSP:DEC:XCOR:THR 512
Query :DSP:DEC:XCOR:THR?

11.27 :DSP:DECision:XCORrelation:CLIP(?)

Description

Query only. Query if the configured operation resulted in an overflow and as a result signal was
clipped.

Response

The Proteus unit will return 1 if the signal was clipped and 0 if it was not clipped.

Example
Query :DSP:DEC:XCOR:CLIP?

Confidential | 181

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

12 System Commands

The system-related commands are not related directly to waveform generation but are an
important part of operating the Proteus unit. Use these commands to reset the instrument and
guery its system settings.

12.1 :SYSTem:LOG[:VERBose] {0|1]|2]|3]4|5|6}(?)

Description
This command will set the logger verbose level (0: minimal, 6: maximal)

Parameters

Range Type Default Description

Oto6 Discrete 4 Select the logger verbose level.
0 — (Undefined)

1 — Critical

2 —Error

3 —Warning

4 — Info

5 — Debugl

6 — Debug2

Response
The Proteus will return the logger verbose level 0 to 6.

Example
Command :SYST:LOG 3
Query :SYST:LOG?

12.2 :SYSTem:ERRor?

Description

Query only. This query will interrogate the Proteus unit for programming errors. It pops the last
error from the error-queue (returns "<err-code>,<description>"). When the error-queue is empty,
the Proteus unit will return just the termination character (an empty string).

Response
The Proteus unit will return the error code. Error messages are listed below.

Example

Query :SYST:ERR?
12.2.1 Error list
SCPI Errors

201, unspecified error
202, missing parameter in scpi

Confidential | 182

@mean ELECTRONICS Proteus Programming Manual Rev.1.4

203, invalid suffix in scpi
204, data out of range in scpi
205, invalid data type in scpi
206, illegal parameter in scpi
207, invalid separator in scpi
208, syntax error in scpi

209, illegal/unknown scpi

Operational Errors

210, not implemented

211, assertion failed

212, validation failure

213, operation was aborted
214, operation was rejected
215, operation was canceled
216, unfinished operation
217, write buffer overflow
218, data not applicable
219, invalid data size

220, null pointer

221, illegal argument

222, already exists

223, settings conflict

224, invalid handle

225, allocation error

226, DeFrag needed

227, timeout elapsed

228, busy

229, exception occurred

File-System Errors
230, bad path

231, file does not exist
232, open file error
233, bad file size

234, file read error

235, file write error
236, file save error

237, file delete error
238, file compress error

239, file extract error

Confidential | 183

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

240, make directory error
241, remove directory error

12.3 :SYSTem:INFormation:CALibration?

Description
Query only. Query the calibration date.

Response

The Proteus unit will return the last calibration date in the format "yyyy-mm-dd hh:MM", e.g.,
2020-12-20 12:30.

Example
Query :SYST:INF:CAL?

12.4 :SYSTem:INFormation:MODel?

Description
Query only. This query will interrogate the instrument for its model ID.
Response
The generator will return its model number, e.g., P25812B.
Example
Query :SYST:INF:MOD?

12.5 :SYSTem:INFormation:SERial?

Description
Query only. This query will interrogate the instrument for its serial number.

Response

The generator will return its serial number in a format similar to the following: 2xxxxx.

Example
Query :SYST: INF: SER?

12.6 :SYSTem:INFormation:HARDware?

Description

Query only. This query will interrogate the instrument for its hardware revision level. The
hardware revision includes PCB revision, FPGA revision and FPLD revision. It is programmed to a
secure location in the flash memory and cannot be modified by the user.

Response

The generator will return its hardware revisions in the form "<AB-<AM>-DB>-<DM>-<ADC>"
where:

Confidential | 184

@meen ELECTRONICS Proteus Programming Manual

AB — Analog Base version.
AM — Analog Mezzanine version.
DB — Digital Base version.
DM — Digital Mezzanine version.
ADC — ADC board version.

Example
Query :SYST: INF:HARD?

12.7 :SYSTem:INFormation:FPGA:VERsion?
Description
Query only. Query the FPGA FW version.

Response
The Proteus unit will return the FPGA FW version x.yyy.z.

Example
Query :SYST:INF:FPGA:VER?

12.8 :SYSTem:INFormation:FPGA:DATE?
Description
Query only. Query the FPGA FW build date.

Response
The Proteus unit will return the FPGA FW build date.

Example
Query :SYST:INF:FPGA:DATE?

12.9 :SYSTem:INFormation:FIRMware:VERsion?

Description
Query only. Query the control PC DLL version.

Response
The Proteus unit will return the control PC DLL version.

Example
Query :SYST:INF:FIRM:VERS?

12.10 SYSTem:INFormation:FIRMware:DATE?

Description
Query only. Query the installed Proteus DLL build date.

Confidential | 185

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Response
The Proteus unit will return the Proteus DLL build date.

Example
Query :SYST:INF:FIRM:DATE?

12.11 :SYSTem:INFormation:DAC?
Description
Query Only. Query the DAC mode. Returns MO for 16-bit width and M1 for 8-bit width.

Response
The Proteus unit will return the DAC mode, MO or M1.

Example
Query :SYST:INF:DAC?

12.12 :SYSTem:INFormation:SLOT?

Description

Query the PXle slot-number that the second slot of the instrument occupies in the chassis. (The
instrument may occupy between 2 and 3 slots.)

Response

The Proteus unit will return the slot-number of the second slot the instrument occupies in the
chassis.

Example
Query :SYST:INF:SLOT?

12.13 SYSTem:INFormation:SCPI[:VERSion]?
Description
Query only. This query will interrogate the set of SCPI command version.

Response

The Proteus unit will return the set of SCPI command version.

Example

Query :SYST:INF:SCPI?

12.14 :SYSTem[:MEASure]:TEMPerature?

Description

Query the internal temperature of the instrument.

Response

The Proteus unit will return the internal temperature (°C).

Confidential | 186

@meaq ELECTRONICS Proteus Programming Manual

Example
Query :SYST:TEMP?

12.15 :SYSTem[:MEASure]:HTPeak?
Description
Query the highest recorded temperature of the instrument.

Response
The Proteus unit will return the highest recorded temperature of the instrument (°C).

Example
Query :SYST:HTP?

12.16 :SYSTem[:MEASure]:LTPeak?

Description

Query the lowest recorded temperature of the instrument.

Response
The Proteus unit will return the lowest recorded temperature of the instrument (°C).

Example
Query :SYST:LTP?

12.17 :SYSTem[:MEASure]:VINTernal?

Description

Query the internal Vcc of the instrument. Use this for troubleshooting the instrument.

Response

The Proteus unit will return the internal Vcc of the instrument (V).

Example
Query :SYST:VINT?

12.18 :SYSTem[:MEASure]:VAUXiliary?
Description
Query the auxiliary Vcc of the instrument.

Response
The Proteus unit will return the auxiliary Vcc of the instrument (V).

Example
Query :SYST :VAUX?

Confidential | 187

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

12.19 :SYSTem:FILE:CATalog?

Description

Query the file catalog in the folder “C:\Users\<user-name>\Documents\ProteusFiles”. This is a list
of the system files, such as waveform data or setup files.

There are several SCPI commands that receive filename as argument:
¢ :MARKer:FILE:[:NAME]
o :TASK:FILE[:NAME]
¢ :SCEN:FILE[:NAME]
¢ :TRACe:SEGMents:FILE[:NAME]
¢ :TRACe:FILE[:NAME]
e :DIG:DATA:FNAMe
e :SYST:FILE[:NAME]
All of them can receive either an absolute full-path, relative-path or just file-name.
If the file-name is not an absolute full-path, then it is assumed that it is inside the folder
“C:\Users\<user-name>\Documents\ProteusFiles”.
Response
The Proteus unit will return the file catalog. The response to :SYSTem:FILE:CATalog? is a comma-
separated list of the file names inside that folder.
Example
Query :SYST:FILE:CAT?

12.20 :SYSTem:FILE[:NAMe]{< #<header><binary-block>}

Description

Specifies the system file. This is used to transfer any binary file from your PC to the instrument.
The file name is defined as an IEEE-488.2 binary block with the name codified in 8-bit unsigned
integers (bytes) with the ASCII codes containing the full path to the source file.

Parameters
Name Type Description
<header> <discrete> The first digit in ASCII following the ‘# character is the number
of digits to follow. The following digits specify the length of the
target file full path name in ASCII.
<binary_block> <string> Full path name for the file in ASCII coded as an unsigned short
integer array.
Example
Command :SYST:FILE #2 64<binary block with 64 bytes with ASCII info>
Example :SYST:FILE #21Omyfile.dat

Confidential | 188

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

12.21 :SYSTem:FILE:SIZE?

Description
Query the file size in bytes.

Response

The Proteus unit will return the file size in bytes.

Example
Query :SYST:FILE:SIZE?

12.22 :SYSTEM:FILE:DATA[<offset>,]#<header><binary_blo
ck>(?)

Description

This command will download binary-data to the specified offset in the Proteus system file.

Parameters
Name Range Type Default |Description
[< offset >] Integer 0 The byte offset in the system file.
#< header > Integer Contains information on the size of the
binary block that follows.
< binary_block > Binary Block of binary data.
Example
Command :SYSTEM:FILE:DATA #42048<binary block>
Query :SYSTEM:FILE:DATA?

12.23 :SYSTEM:FILE:DELete

Description

This command will delete the Proteus system file.

Example

Command :SYSTEM: FILE:DEL

Confidential | 189

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

13 Appendix Proteus SCPI MATLAB Script
Examples

13.1 Introduction

The following MATLAB scripts are a series of examples to show how different operations can be
performed by the Proteus series of Arbitrary Waveform Transceivers using SCPI commands. The
scripts show the right sequence of commands leading to several results and also the way different
binary data involved in each functionality is properly calculated, formatted, and transferred. The
code in this section is found in the Proteus_SCPI_MATLAB_Script_Examples_Ver.x.y.zip file at
the downloads page of the Tabor Electronics web site (https://www.taborelec.com/Downloads)
and it can be used and modified according to the GNU rules.

Each script includes a series of supporting functions. These functions have been created to be
reusable so they can be used as building blocks for any application. However, most of the
communications and basic control of the Proteus unit is handled by a generic library
(TEProteusinst.m) that it is also available in the example programs download package. Both the
library and the example scripts (and the associated functions) are properly documented through
the extensive usage of comments. All the examples are self-contained so external data (as
waveforms) are not required.

The current examples are designed to use the VISA (Virtual Instrument Software Architecture) API
to communicate with the target Proteus devices. They are also written to support all the Proteus
models and operating modes. However, a particular Proteus may not support a specific function.

13.2 Opening a Session with Proteus

13.2.1 Programming Example 1 shows the way to open a session with any Proteus unit regardless
of the interface being used for communication. The “LAN” option implements communication
through a VISA standard socket-based TCP-IP device. The “DLL” directly uses the functions in the
Proteus driver DLL to communicate through the PCle bus within the PXle bus. The “LAN” option
can be implemented in any internal (embedded) or external controller through any TCP-IP
compatible connection (internal host, external computer through Ethernet, USB, WiFi, Bluetooth,
etc). The “DLL” option can be used with any internal (embedded) computer, or an external
computer connected to a PXle chassis using some PXle bus extender including those using
Thunderbolt interfaces. The “DLL” API offers a much faster transfer rate to/from the instrument,
especially when large blocks of binary data must be transferred.

The examples shown here use a MATLAB function library, TEProteusinst.m, developed by Tabor
to simplify and speed up communications to/from Proteus. An important feature of this library is
that the same functions can be used for the same purpose regardless of the APl being used, DLL
or LAN. In other words, the same code will work using both APIs without any modification other
than defining the right interface and identifier. For the “LAN” API; the IP address must be defined.
For the DLL API, it is the slot number that must be declared.

13.2.1 Programming Example 1 identifies the model (including the serial number), extracts all the
installed options, and give some basic parameters that must be known to calculate and download
waveforms.

Among many others, these useful functions are included in the example:

Confidential | 190

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

e ConnecToProteus: Opening a session with a Proteus unit supporting all kind of control
computers, interfaces, and APlIs.

e getOptions: Getting the Proteus options and returning them in an easy-to-handle format.

13.2.1 Programming Example 1

% BASIC EXAMPLE FOR CONNECTION TO PROTEUS USING VISA OR PXI

o°

% VISA Communications from MATLAB requires the Instrument Control
Toolbox

clear;

close all;

clear variables;
clear global;
clcy;

% Define IP Address for Target Proteus device descriptor

% VISA "Socket-Based" TCP-IP Device. Socket# = 5025

ipAddr = '127.0.0.1'; % '127.0.0.1' = Local Host, your IP address here
pxiSlot = 0; % Set 0 to select slot from attached modules

jo

% Instrument setup

cType = "LAN"; $"LAN" = VISA or "DLL" = PXI
if cType == "LAN"
connPar = ipAddr;
else
connPar = pxiSlot; % Your stot # here, o for manual
selection
end
paranoia level = 2; % 0, 1 or 2
[inst, admin, idnstr, slotNumber] = ConnecToProteus (cType, connPar,

paranoia level);

fprintf ('Connected to: %s, slot: %d\n', idnstr, slotNumber);
% Get options using the standard IEEE-488.2 Command
optstr = getOptions(inst);

for i=1l:length (optstr)
fprintf ('\nOption #%d Installed: %s', i, char (optstr(i))):;
end
% Get Number of Channels
numchan = getNumOfChannels (idnstr);
fprintf ('\n\nNumber of Channels = %d\n', numchan);
% Get min sampling rate
minsr = getMinSamplingRate (inst);
fprintf ('\nMinimum Sample Rate = %d samples/sec\n', minsr);

o

s Get max sampling rate

Confidential | 191

@meaq ELECTRONICS Proteus Programming Manual

maxsr = getMaxSamplingRate (inst) ;
fprintf ('\nMaximum Sample Rate = %d samples/sec\n', maxsr);

% Get granularity
granul = getGranularity(idnstr, optstr, 16);
fprintf ('\nGranularity = %d samples\n', granul);

% Get Sample Resolution
dacres = getDacResolution (inst);
fprintf ('\nSample Resolution = %d bits\n', dacres);

% Disconnect, close VISA handle and destroy handle
if cType == "LAN"
inst.Disconnect () ;
else
admin.CloseInstrument (inst.InstrId);
admin.Close () ;
end

clear inst;
clear admin;
close all;

function [inst,...
admin, ...
modelName, ...
sId] = ConnecToProteus(cType,
connStr,
paranoia level)

o°

Connection to target Proteus
cType specifies API. "LAN" for VISA, "DLL" for PXI

o°

o°

adress

as an string

Paranoia Level add additional checks for each transfer. O
ecks.

1 = send OPC?, 2 = send SYST:ERROR?

o°

o°

h

o°

o°

It returns

inst: handler for the selected instrument

admin: administrative handler

modelName: string with model name for selected instrument
"P9484")

% sId: slot number for selected instrument

o° o

o°

pid = feature('getpid');
fprintf (1, "\nProcess ID %d\n',pid);

dll path = 'C:\\Windows\\System32\\TEPAdmin.d1l1l';
admin = 0;
if cType == "LAN"

try

Confidential | 192

connStr is the slot # as an integer (0 for manual selection)

(i

Rev. 1.4

or IP

no

.e.

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

connStr = strcat ('TCPIP::',connStr,'::5025::SOCKET"') ;

inst = TEProteusInst (connStr, paranoia level);
res = inst.Connect () ;
assert (res == true);
modelName = identifyModel (inst) ;

catch ME
rethrow (ME)

end

else

asm = NET.addAssembly(dll path);

import TaborElec.Proteus.CLI.¥*
import TaborElec.Proteus.CLI.Admin.*
import System.*

admin = CProteusAdmin (@OnLoggerEvent) ;
rc = admin.Open () ;
assert (rc == 0);

try
slotIds = admin.GetSlotIds() ;
numSlots = length(size(slotIds));
assert (numSlots > 0);

% If there are multiple slots, let the user select one
sId = slotIds (1)
if numSlots > 1
fprintf ('\n%d slots were found\n', numSlots);
for n = l:numSlots
sId = slotlIds(n);
slotInfo = admin.GetSlotInfo(sId);
if ~slotInfo.IsSlotInUse
modelName = slotInfo.ModelName;
if slotInfo.IsDummySlot && connStr ==
fprintf (' * Slot Number:%d Model %s [Dummy
Slot].\n', sId, modelName) ;
elseif connStr ==
fprintf (' * Slot Number:%d Model %s.\n',
sId, modelName) ;
end
end
end
pause (0.1);
if connStr == 0
choice = input ('Enter SlotId '");
fprintf ('\n");
else
choice = connStr;
end
sId = uint32 (choice);
slotInfo = admin.GetSlotInfo (sId);
modelName = slotInfo.ModelName;
modelName = strtrim(netStrToStr (modelName)) ;

Confidential | 193

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

end

% Connect to the selected instrument

should reset = true;

inst = admin.OpenInstrument (sId, should reset);
instId = inst.InstrId;

catch ME
admin.Close () ;
rethrow (ME)

end
end
end
function model = identifyModel (inst)
idnStr = inst.SendScpi ('"*IDN?"'");
idnStr = strtrim(netStrToStr (idnStr.RespStr));
idnStr = split(idnStr, ',");
if length(idnStr) > 2
model = idnStr(2);
else
model ='P9484M';
end
% model = idnStr;
end
function options = getOptions (inst)
optStr = inst.SendScpi ('*0PT?"');
optStr = strtrim(netStrToStr (optStr.RespStr));
options = split (optStr, ','):;
end

function minSr = getMinSamplingRate (inst)
minSr = inst.SendScpi (':FREQ:RAST MIN?');
minSr = strtrim(netStrToStr (minSr.RespStr));
minSr str2double (minSr) ;

end

function maxSr = getMaxSamplingRate (inst)
maxSr = inst.SendScpi (':FREQ:RAST MAX?');
maxSr = strtrim(netStrToStr (maxSr.RespStr));
maxSr str2double (maxSr) ;

end
function granularity = getGranularity (model, options, dacMode)
flagLowGranularity = false;
for i = 1l:length (options)
if contains (options(i), 'Gl') || contains (options(i), 'G2"')

flagLowGranularity = true;
end

Confidential | 194

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

end
granularity = 32;

if contains (model, 'P258")
granularity = 32;
if flagLowGranularity
granularity = 16;
end
elseif contains (model, 'P128"'")
granularity = 32;
if flagLowGranularity
granularity = 16;

end
elseif contains (model, 'P948"'")
if dacMode == 16

granularity = 32;
if flagLowGranularity
granularity = 16;
end
else
granularity = 64;
if flagLowGranularity
granularity = 32;
end
end
elseif contains (model, 'P908')
granularity = 64;
if flagLowGranularity
granularity = 32;
end
end
end

function dacRes = getDacResolution (inst)

dacRes = inst.SendScpi (':TRAC:FORM?');
dacRes strtrim(netStrToStr (dacRes.RespStr));

if contains (dacRes, 'U8'")
dacRes = 8;
else
dacRes = 16;
end
end

function numOfChannels = getNumOfChannels (model)
numOfChannels = 4;

if contains (model, 'P9082"'")

numOfChannels = 2;
elseif contains (model, 'P9482'")
numOfChannels = 2;

Confidential | 195

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

elseif contains (model, 'P1282")

numOfChannels = 2;

elseif contains (model, 'P2582")
numOfChannels = 2;

elseif contains (model, 'P9086')
numOfChannels = 6;

elseif contains (model, 'P9486'")
numOfChannels = 6;

elseif contains (model, 'P1286'")
numOfChannels = 6;

elseif contains (model, 'P2586"'")
numOfChannels = 6;

elseif contains (model, 'P9488'")
numOfChannels = 8;

elseif contains (model, 'P1288")
numOfChannels = 8;

elseif contains (model, 'P2588'")
numOfChannels = 8;

elseif contains (model, 'P94812")
numOfChannels = 12;

elseif contains (model, 'P12812")
numOfChannels = 12;

elseif contains (model, 'P25812")
numOfChannels = 12;

end
end
function [str] = netStrToStr (netStr)
try
str = convertCharsToStrings (char (netStr));
catch
str = '";
end
end

13.3 Generating a Waveform in Multiple Channels

13.3.1 Programming Example 2 shows the way to calculate, format, and download waveforms to
the target Proteus unit. The example adapts itself to the specific model so the number of channels,
either 2 or 4, is defined. The script generates 4 different periodic waveforms by integration of the
basic square waveform, so a square, a triangular, a cosine, and a sine waveform are generated as
seen in this scope acquisition:

Confidential | 196

@msoq ELECTRONICS Proteus Programming Manual Rev.1.4

=
3 N
m
=
o
o
[
<
o
=
(2]
v
=
o
o

-150 ns

|s0.0ns/ ||0.0s

Figure 13-1 Waveforms Generated by Channel 1 - 4, Square, Triangular, Cosine, Sine

13.3.1 Programming Example 2 also shows how to generate, format, and download marker data.
For each channel two markers are defined. Marker 1 carries a sync pulse aligned with the
beginning of the waveform segment, while Marker 2 carries a random bit sequence. The duration
of marker 1 is proportional to the channel number and the random data is different for each
marker 2:

Confidential | 197

@msoq ELECTRONICS Proteus Programming Manual Rev.1.4

File Control éetub"Disﬁ'Ié; Trighef ‘Measure Math Anélyze Utilities Demos Help

=
3 N
m
=
o
o
[
<
o
=
(2]
v
=
o
o

-
115ns

@ (20.0ns/ |[51.50400s | (@ T B.|

Figure 13-2 Channel 1, 2 with Channel 1 Marker Data (Blue, Red)

In the figure above marker 1 and marker 2 from channel 1 are shown at the bottom of the
oscilloscope display.

Confidential | 198

@maaq ELECTRONICS Proteus Programming Manual Rev.1.4

In the figure below random data for maker 2 from ch1 and marker 2 from channel 2 are shown:

=
3
m
=
(1]
W
wn
o
(1]
=
o
=
=
0]
1]
7]

-
-10ns 190 ns

20.0 ns/ |[79.0320 ns

Figure 13-3 Channel 1 with Marker Data (Blue), Channel 2 with Marker Data (Red)

13.3.1 Programming Example 2 direct generation for all proteus models in direct and interpolated
modes.

The example includes useful functions for different purposes:
o SendWfmToProteus: Waveform download.

e myQuantization: Proper normalized waveform (-1.0/+1.0 range) quantization for all the
DAC modes.

e SendMkrToProteus: Marker download

o FormatMkr2 and FormatMkr4: Marker data formatting for 2 and 4 markers per channel.

13.3.1 Programming Example 2

% EXAMPLE FOR DIRECT MODE

o= === ===========================

% This example calculates up to 4 different signals and download them
into
% each available channel in the target Proteus device.

% The basic waveform is an square waveform using the full DAC range
and it

Confidential | 199

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

[o)

% 1is downloaded to channel #1. For each channel, the waveform is
calculated

o)

% by integration of the previous waveform in a similar way to some

analog

% signal generators, where the triangular wave is obtained by
integration

% of an square wave, and the sinusoidal waveform is obtained by
integration

of the triangular wave. Channel #4, when available, will generate a
"cosine" wave obatined by integration of the sinewave assigned to
channel

#3.

Markers for each channel are also calculated and downloaded. Marker
is

a sync pulse. Its duration (in states) is equal to the channel
number.

o

% Marker 2 is just geenrating a random stream of bits.

o°

o°

o° o

o°e

clear;

close all;

clear variables;
clear global;
clc;

fprintf (1, 'INITIALIZING SETTINGS\n');

pid = feature('getpid');
fprintf (1, '\nProcess ID %d\n',pid);

o°

BASIC EXAMPLE FOR CONNECTION TO PROTEUS USING VISA OR PXI

o

% VISA Communications from MATLAB requires the Instrument Control
Toolbox

clear;

close all;

clear variables;
clear global;
clc;

% Define IP Address for Target Proteus device descriptor

% VISA "Socket-Based" TCP-IP Device. Socket# = 5025

ipAddr = '127.0.0.1"'; %'127.0.0.1"'= Local Host; % your IP here
pxiSlot = 0;

[o)

s Instrument setup

cType = "LAN"; S$"LAN" = VISA or "DLL" = PXI
if cType == "LAN"
connPar = ipAddr;
else
connPar = pxiSlot; % Your slot # here, o for manual
selection
end

Confidential | 200

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

paranoia level = 2; % 0, 1 or 2

% Open Session and load libraries

[inst, admin, model, slotNumber] = ConnecToProteus (cType, connPar,
paranoia level);

% Report model
fprintf ('Connected to: %s, slot: %d\n', model, slotNumber);

% Reset AWG

inst.SendScpi ('*CLS; *RST"') ;

% Get options using the standard IEEE-488.2 Command
optstr = getOptions(inst);

samplingRate = 9000E6;
interpol 4;
dacMode = 16;

if (samplingRate / interpol) > 2.5E9
dacMode = 8;
interpol = 1;

end

if (samplingRate / interpol) < 250E6
interpol = 1;

end

% Get granularity

granul = getGranularity(model, optstr, dacMode);

fprintf ('\nGranularity = %d samples\n', granul);

% Get Active Channels and Segment #
[chanList, segmList] = GetChannels (model, samplingRate / interpol);
numOfChannels = length(chanList);

fprintf (1, 'Calculating WAVEFORMS\n') ;

minCycles = 1;
period = 1E-7;
% SETTING AWG
fprintf (1, 'SETTING AWG\n'") ;

% Set sampling rate for AWG to maximum.
if interpol > 1
inst.SendScpi (':FREQ:RAST 2.5E9'");
inst.SendScpi ([':INT X ' num2str (interpol)]);
end
inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);

wfmVolt = 0.5;
wfmOff = 0.0;

Confidential | 201

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

mkrVolt = 1.0;
mkrOff = 0.5;

for channel = 1l:numOfChannels
% Calculate basic square wave
if mod(channel, 4) ==
myWfm = getSquareWfm (samplingRate / interpol, ...
minCycles, ...
period, ...
granul) ;
end

mkrDiv = 2;

if dacMode == 8
mkrDiv = 8;

end

myMkrl = uint8(zeros(l, length (myWfm) / mkrDiv));

myMkrl (1:channel) = uint8(1l); % Sync marker duration depends on
the channel
myMkr2 = rand(l, length (myMkrl)); % Random data is different for

each channel

myMkr2 = uint8 (myMkr2 > 0.5);

myMkr = FormatMkr2 (dacMode, myMkrl, myMkr2);
myMkr2 = uint8 (myMkr2 > 0.5);
myMkr = myMkr + 2 * myMkr2;

o° o o°

o°

if dacMode == 16

myMkr = myMkr (1:2:length (myMkr)) + 16 *
myMkr (2:2:1length (myMkr)) ;
% end

o

%Select Channel

inst.SendScpi (sprintf (':INST:CHAN %d', chanList (channel)));
% DAC Mode set to 'DIRECT" (Default)

inst.SendScpi (':SOUR:MODE DIRECT') ;

% Segment # processing

% All Proteus models except the P908X share the same waveform
memory

% bank among channel N+1 and N+2, N=0..NumOfChannels/2. This means
that

% the same segment number cannot be used for this pair of
channels. In

Q

% this case the designated segment is used for the odd numbered
% channels and the next segment is assigned to the even numbered
channel

% of the same pair. All segments can be deleted just once for each

pair
% of channels.
if segmList (channel) == 1
% All segments deleted for current waveform memory bank
inst.SendScpi (':TRAC:DEL:ALL") ;
end

Confidential | 202

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

% Waveform Downloading
% *hkkkhkkhkkhkkhk kA hkhkkhkkhkkkk Kk Khk

fprintf (1, 'DOWNLOADING WAVEFORM FOR CH%d\n', chanList (channel));

SendWfmToProteus (inst, ...
samplingRate, ...
chanList (channel), ...
segmList (channel), ...
myWfm, ...
dacMode, . ..
false);

result = SendMkrToProteus (inst, myMkr) ;

fprintf (1, 'WAVEFORM DOWNLOADED!\n');

% Select segment for generation
fprintf (1, 'SETTING AWG OUTPUT\n');

inst.SendScpi (sprintf (':SOUR:FUNC:MODE:SEGM %d',
segmList (channel)));

% Output voltage and offset
inst.SendScpi ([':SOUR:VOLT ' num2str (wfmVolt)]);
inst.SendScpi ([':SOUR:VOLT:0FFS ' num2str (wfmOff)]);

% Activate outpurt and start generation
inst.SendScpi (':0UTP ON'");

inst.SendScpi (':MARK:SEL 1'"); $Markerl

inst.SendScpi ([':MARK:VOLT:PTOP ' num2str (mkrVolt)]):; SVpp

inst.SendScpi ([':MARK:VOLT:OFFS ' num2str (mkrOff)]); %DC
Offset

inst.SendScpi (':MARK ON'");

inst.SendScpi (':MARK:SEL 2'"); $Markerl

inst.SendScpi ([':MARK:VOLT:PTOP ' num2str (mkrVolt)]):; SVpp

inst.SendScpi ([':MARK:VOLT:OFFS ' num2str (mkrOff)]); %DC

Offset
inst.SendScpi (':MARK ON'");

% The new waveform is calculated for the next channel
if mod(channel, 4) < 3
% Integration
myWfm = cumsum (myWfm) ;
% DC removal
myWfm = myWfm - mean (myWfm) ;
% Normalization to the -1.0/+1.0 range
myWfm = myWfm / max (abs (myWfm)) ;
end

end
% It is recommended to disconnect from instrument at the end

if cType == "LAN"
inst.Disconnect () ;

Confidential | 203

@meaq ELECTRONICS Proteus Programming Manual

else

end

admin.CloseInstrument (inst.InstrId);
admin.Close () ;

function sqgrWfm = getSquareWfm(samplingRate, ...

numCycles, ...
period, ...
granularity)

wfmLength = round (numCycles * period *samplingRate);
wfmLength = round(wfmLength / granularity) * granularity;

period = wfmLength / numCycles;
sgrWfm 0: (wfmLength - 1);
sqrWfm = square (sqrWfm * 2 * pi / period);

end
function result = SendWfmToProteus (inst, ...
samplingRate, ...
channel, ...
segment, ...
myWfm, ...
dacRes, ...
initialize)
if dacRes == 16
inst.SendScpi (':TRAC:FORM Ul6"'") ;
else
inst.SendScpi (':TRAC:FORM U8"') ;
end

%$Select Channel
if initialize
inst.SendScpi (':TRAC:DEL:ALL") ;

inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);

end

inst.SendScpi (sprintf (' :INST:CHAN %d', channel));
inst.SendScpi (sprintf (':TRAC:DEF %d, %d', segment,

length (myWfm))) ;

% select segmen as the the programmable segment
inst.SendScpi (sprintf (':TRAC:SEL %d', segment));

% format Wfm
myWfm = myQuantization (myWfm, dacRes, 0);

% Download the binary data to segment
prefix = ':TRAC:DATA 0,';

if (dacRes==16)
myWfm uintl6 (myWfm) ;
myWfm = typecast (myWfm, 'uint8');

Confidential | 204

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

else
myWfm = uint8 (myWfm) ;
end

res = inst.WriteBinaryData (prefix, myWfm);
assert (res.ErrCode == 0);

if initialize
inst.SendScpi (sprintf (':SOUR:FUNC:MODE:SEGM %d', segment))
% Output voltage set to MAX
inst.SendScpi (':SOUR:VOLT MAX') ;
% Activate outpurt and start generation
inst.SendScpi (':0UTP ON') ;

end

result = length (myWfm) ;
end

function result = SendMkrToProteus(inst,myMkr)
% Download the binary data to segment

prefix = ':MARK:DATA 0,';

inst.WriteBinaryData (prefix, myMkr);

%$instHandle.SendBinaryData (prefix, myMkr, 'uint8'");

result = length (myMkr) ;

end

function mkrData = FormatMkr2 (dac Mode, mkrl, mkr2)

% Mkrl goes to bit 0 and Mkr2 goes to bit 1 in a 4-bit Nibble

mkrData = mkrl + 2 * mkr2;

% For DAC Mode 8, just one Nibble per Byte is sent

% For DAC Mode 16, two consecutive nibbles are multiplexed in one
byte

if dac _Mode == 16

mkrData = mkrData(l:2:length (mkrData)) +
16 * mkrData (2:2:1length (mkrData));

end

end

function mkrData = FormatMkrd (dac Mode, mkrl, mkr2, mkr3, mkr4)

% Mkrl goes to bit 0 and Mkr2 goes to bit 1 in a 4-bit Nibble

mkrData = mkrl + 2 * mkr2 + 4 * mkr3 + 8 * mkr4;

% For DAC Mode 8, just one Nibble per Byte is sent

% For DAC Mode 16, two consecutive nibbles are multiplexed in one
byte

if dac_Mode == 16

mkrData = mkrData(l:2:length(mkrData)) +
16 * mkrData (2:2:1ength (mkrData));

end

end

function [inst,...
admin, ...
modelName, ...
sId] = ConnecToProteus(cType,

Confidential | 205

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

connStr,
paranoia level)

o\

Connection to target Proteus
cType specifies API. "LAN" for VISA, "DLL" for PXI
connStr is the slot # as an integer (0 for manual selection) or IP

o°

o\

adress

% as an string

% Paranoia Level add additional checks for each transfer. 0 = no
checks.

% 1 = send OPC?, 2 = send SYST:ERROR?

o\

It returns

inst: handler for the selected instrument

admin: administrative handler

3 modelName: string with model name for selected instrument (i.e.
"po484M)

% sId: slot number for selected instrument

o° o

\O

pid = feature('getpid');
fprintf (1, '\nProcess ID %d\n',pid);

dll path = 'C:\\Windows\\System32\\TEPAdmin.d11l';
admin = 0;
sId = 0;
if cType == "LAN"
try
connStr = strcat ('TCPIP::',connStr,'::5025::SOCKET") ;
inst = TEProteusInst (connStr, paranoia level);
res = inst.Connect();
assert (res == true);
modelName = identifyModel (inst) ;
catch ME
rethrow (ME)
end
else

asm = NET.addAssembly (dll path);

import TaborElec.Proteus.CLI.*
import TaborElec.Proteus.CLI.Admin.*
import System.*

admin = CProteusAdmin (@OnLoggerEvent) ;
rc = admin.Open () ;
assert (rc == 0);

try
slotIds = admin.GetSlotIds();
numSlots = length(size(slotIds));
assert (numSlots > 0);

% If there are multiple slots, let the user select one
sId = slotIds(l);

Confidential | 206

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

if numSlots > 1
fprintf ('\n%d slots were found\n', numSlots);
for n = l:numSlots
sId = slotIds(n);
slotInfo = admin.GetSlotInfo (sId);
if ~slotInfo.IsSlotInUse
modelName = slotInfo.ModelName;
if slotInfo.IsDummySlot && connStr ==
fprintf (' * Slot Number:%d Model %s [Dummy
Slot].\n', sId, modelName):;
elseif connStr ==
fprintf (' * Slot Number:%d Model %s.\n',
sId, modelName) ;
end
end
end
pause (0.1) ;
if connStr == 0
choice = input ('Enter SlotId '");
fprintf ('\n");
else
choice = connStr;
end
sId = uint32 (choice);
slotInfo = admin.GetSlotInfo (sId);
modelName = slotInfo.ModelName;
modelName = strtrim(netStrToStr (modelName)) ;
end

% Connect to the selected instrument

should reset = true;

inst = admin.OpenInstrument (sId, should reset);
instId = inst.InstrId;

catch ME
admin.Close () ;
rethrow (ME)
end
end
end

function model = identifyModel (inst)
idnStr = inst.SendScpi ('*IDN?') ;
idnStr = strtrim(netStrToStr (idnStr.RespStr));
idnStr split (idnStr, ', ");

if length(idnStr) > 1
model = idnStr(2);
else
model ='";
end
end

function options = getOptions (inst)

Confidential | 207

@TABOR‘ ELECTRONICS

optStr = inst.SendScpi ('*OPT?"'");

optStr

options = split (optStr, ','");

end

function

granularity = getGranularity (model,

flagLowGranularity = false;

for

end

flagLowGranularity = false; % TEMPORARY

i = l:length (options)

if contains (options (i), 'Gl"')
flagLowGranularity = true;
end

granularity = 32;

if ¢

else

else

else

end
end

function

if ¢
contains

ontains (model, 'P258")

granularity = 32;

if flagLowGranularity
granularity = 16;

end

if contains (model, 'P128'")

granularity = 32;

if flagLowGranularity
granularity = 16;

end
if contains (model, 'P948"'")
if dacMode == 16

granularity = 32;
if flagLowGranularity
granularity = 16;
end
else
granularity = 64;
if flagLowGranularity
granularity = 32;
end
end
if contains (model, 'P908")
granularity = 64;
if flagLowGranularity
granularity = 32;

Proteus Programming Manual

strtrim(netStrToStr (optStr.RespStr));

options, dacMode)

contains (options (i),

end

[chanList, segmList] = GetChannels (model, sampleRate)
ontains (model, 'P9484') || contains (model, 'P2584")
(model, 'P1284"'")

if sampleRate <= 2.5E9

Confidential | 208

Rev. 1.4

IGZI)

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

chanList = [
segmList = [
else
chanList = [1 3];
segmList = [1 11,
end

elseif contains (model, 'P9482') || contains (model, 'P2582") ||
contains (model, 'P1282"'")
if sampleRate <= 2.5E9
chanList = [1 2];
segmList = [1 21;

else
chanlList = [1];
segmList = [1];
end
elseif contains (model, 'P9488') || contains (model, 'P2588") ||

contains (model, 'P1288"'")

if sampleRate <= 2.5E9
chanlList = [1 2 3 4 5 6 7 8]1;
segmList = [1 2 1 2121 2];
else
chanList = [1 3 5 7];
segmList = [1 1 1 17;
end
elseif contains (model, 'P94812') || contains (model, 'P25812') ||
contains (model, 'P12812")
if sampleRate <= 2.5E9
chanList = [1 2 345 6 7 8 9 10 11 12];
segmList = [1 2 1 2 12 12121 2];
else
chanList = [1 3 5 7 9 117];
segmList = [1 1 1 1 1 17];
end

elseif contains (model, 'P9082'")
chanlList = [1 2]1:
segmList = [1 1];

elseif contains (model, 'P9084'")
chanList = [1 2 3 47;
segmList = [1 1 1 1];

elseif contains (model, 'P9086"'")
chanlList = [1 2 3 4 5 6];
segmList (11111 1];
end
end

function retval = myQuantization (myArray, dacRes, minLevel)

maxLevel = 2 ~ dacRes - 1;

Confidential | 209

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

numOfLevels = maxLevel - minLevel + 1;

retval = round((numOfLevels .* (myArray + 1) - 1) ./ 2);
retval = retval + minLevel;
retval (retval > maxLevel) = maxLevel;
retval (retval < minLevel) = minLevel;
end
function [str] = netStrToStr (netStr)
try
str = convertCharsToStrings (char (netStr));
catch
str = '';
end
end

13.4 Using the DUC Mode to Generate RF Signals

13.4.1 Programming Example 3 shows the way to calculate, format, and download baseband I1Q
signals and generate RF signals using the DUC in the different supported modes; ONE, TWO, or
HALF. It also shows how to generate non-RF signals in the DUC mode for applications as symbol
clock, reference, or auxiliary (i.e., envelope) signals. The example supports the generation or an
arbitrary number of single sideband (SSB) tones, including equally spaced multitone signals,
QPSK/QAM with arbitrary number of symbols and symbol rate, and 802.11ax (160MHz
Modulation BW) and 802.11ad (1.8GHz Modulation Bandwidth). The 802.11ax, and 802.11ad
waveforms require the WLAN Toolbox for MATLAB. This example can handle baseband signals at
any sampling rate and a re-sampling function can transform them to the baseband sampling rate
defined by the DAC sampling rate and interpolation factor.

Confidential | 210

TABOR ELECTRONICS Proteus Programming Manual Rev.1.4

The figure below depicts a 50MBaud QPSK signal generated by this script at 1GHz carrier
frequency.

KEYSIGHT |nput RF Input Z: 50 Q Atten: 8 dB Format: QPSK CF: 1.000000000 GHz
Coupling: AC Corrections: Off Info BW: 75 MHz ~ Sym Rate: 50 MHz Trig: Free Run
[D Align: Auto Freq Ref: Int (S) Meas Intvl: 501 symbols
Equalizer. On

a i 2 MS_1Q Meas Time (I
1 MS_1Q Meas Time (IQ) ¥ Eye) v

Scale/Div 366.74 m Ref Value -8.4468 m

Left: -1.50 symbols Width: 3.00 symbols|
-4.965 4.965 |Ref Sym: 1.00 symbols Sym Intvl: 500.00 symbols!

3 Spectrum 4 MS_Metrics TX Power -6.88 dBm

Scale/Div 10.00 dB Ref Value 0.00 dB
caleDv et Value m EVM 0.17 %ms 0.43 %pk

Mag Error 0.11 %rms -0.41 %pk
Phase Error 0.07 °rms -0.25 °pk
] J LTS F Y
W‘H‘ .I \.p %rthl,w”l“\ﬂ J\J Hw |'|\w‘|| 'l\‘lu- I‘rrl ’I‘ 'h“l.u“h‘“ |'"|“\J||W‘ i EelEne 32 84 Hz
Clock Error -4.02 Hz
‘\ I/Q Offset -83.65 dB

‘ | SNR (MER) 55.53 dB
ity fhag M Quad Error 0.00°
] W -

Ctr: 1 GHz Width: 75 MHz gﬁg’ {niz fggogg
Res BW: 320.1 kHz Info BW: 75 MHz :

b g
DR ? W D

Figure 13-4 Modulation Analysis of a 50MBaud QPSK Signal with a 1GHz Carrier Frequency

Confidential | 211

@maan ELECTRONICS Proteus Programming Manual Rev.1.4

The signal below is generated at 9GS/s, 8x interpolation factor, in 1Q Mode 1. In a different
channel, a symbol clock signal is generated. Here the | baseband signal and the clock signal are
shown in an oscilloscope as depicted in the figure below.

U [SEaW awng

seal |E

-6.05 ps -0.04 ps -6.02 ps -6.01 ps

-6.05 ps -0.04 ps -6.03 pus -6.02 ps -6.01 ps
@ [10.0 ns/ |[-5.9999999 s | |
|-s| Results
1-174 Bl 2795 - 5590

175 - 349 B 5591- 11180
350 - 698

690 - 1397
1398 - 2795

Figure 13-5 Top Window Shows the Baseband 1&Q Waveforms, Bottom Window Shows the
Eye Diagram for the | Waveform Using a Clock Signal Generated by a Another Channel

Confidential | 212

@maan ELECTRONICS Proteus Programming Manual Rev.1.4

When selecting the “envelope” option for the baseband output, the RF signal and the
corresponding envelope signal (i.e., to be fed to an “envelope tracking” amplifier” can be seen in
an oscilloscope, see figure below.

.
File Control Setup Display Trigger Measure Math Analyze Utilities Demos Help

IUSA | SESW S

=
=
1]
1]
7]

-201ns -151 ns

@ (s0.0ns/ |[-1.1100ns | @) T 11'|

Figure 13-6 Red Waveform Shows a Digitally Modulated RF Signal While the Blue Waveform
Shows the Envelope Signal

Confidential | 213

TABOR ELECTRONICS Proteus Programming Manual Rev.1.4

The figure below shows a 1800MBaud QPSK signal that is generated at 2GHz carrier frequency in
the HALF mode.

Spectrum Analyzer 1
Occupied BW
KEYSIGHT |Input RF Input Z: 50 O Atten: 10 dB Trig: Free Run Center Freq: 2.000000000 GHz
Coupling: AC Corrections: Off Gate: Off Avg|Hold=10/10
[D Align: Auto Freq Ref: Int (S) #IF Gain: Low Radio Std: None

1 Graph
Scale/Div 5.0 dB Ref Value -30.00 dBm

Center 2.000 GHz Video BW 50.000 MHZ* Span 2.5 GHz
Res BW 3.0000 MHz Sweep 1.00 ms (1001 pts)

2 Metrics

Occupied Bandwidth
1.8884 GHz Total Power -13.6 dBm

Transmit Freq Error -12.447 MHz % of OBW Power 98.00 %
x dB Bandwidth 2.035 GHz xdB -26.00 dB

| ? e 11
Figure 13-7 1800MBaud QPSK signal is Generated at 2GHz Carrier Frequency in the HALF Mode

Confidential | 214

@maaq ELECTRONICS Proteus Programming Manual Rev.1.4

Mode TWO can generate two different (and independent) modulated carriers. Here a 50MBaud
QPSK signal is generated at 500MHz, and a 100MBaud QAM16 signal is generated at 2GHz using
both DUC blocks in the same channels, see figure below.

Spectrum Analyzer 1
Swept SA

KEYSIGHT |nput RF Input Z: 50 O #Atten: 6 dB PNO: Fast Avg Type: Log-Power 234
Coupling: AC Corrections: Off Gate: Off Trig: Free Run ™
[I) Align: Auto Freq Ref: Int (S) IF Gain: Low
Sig Track: Off NNNNRNN

1 Spectrum
Scale/Div 10 dB Ref Level -20.00 dBm

Center 1.388 GHz Video BW 3.0 MHz Span 2.500 GHz|
Res BW 3.0 MHz Sweep ~1.52 ms (1001 pts)

=DM ? i

Figure 13-8 50MBaud QPSK signal is Generated at 500MHz, and a 100MBaud QAM16 signal is
Generated at 2GHz Using Both DUC blocks in the Same Channels

Confidential | 215

TABOR ELECTRONICS Proteus Programming Manual

The figure below depicts the 500MHz signal analysed with a VSA.

CF: 500.000000 MHz
Trig: Free Run

Input Z: 50 Q
Corrections: Off
Freq Ref: Int (S5)

Atten: 0 dB
Info BW: 75 MHz

Format: QPSK

Sym Rate: 50 MHz
Meas Intvl: 501 symbols
Equalizer On

2MS_IQ Meas Time (I

KEYSIGHT |C"Duli|RF A
oupling:
[:) Align: Auto

1 MS_IQ Meas Time (IQ) ¥

Eye)
Scale/Div 556.48 m

Ref Value 45.444 m

Left: -1.00 symbols
4.851 |Ref Sym: 0.00 symbols

3 Spectrum

Scale/Div 10.00 dB Ref Value 0.00 dBm

Ay

A ‘lﬂ' Ty |‘ I“‘M' |~I w” ‘\I |‘ ’L Ilrl i h"u [' '-IU" ‘r ‘r"ll“l{

'i

L hit]
Ctr: 500 MHz
Res BW: 320.1 kHz

=9~ ?

Info BW: 75 MHz

May 09, 2023
10:22:22 AM

il ' i "u'm ok e
i,

4 MS_Metrics

EVM

Mag Error
Phase Error
Freq Error
Clock Error
1/Q Offset
SNR (MER)
Quad Error
Gain Imb.
Rho

TX Power

0.22 %rms
0.14 %rms
0.09 °rms

Figure 13-9 500MHz QPSK Signal Analysed with a VSA
The figure below depicts the 2GHz signal analysed with an VSA.

Rev. 1.4

Width: 2.00 symbols
Sym Intvl: 500.00 symbols'

-18.11 dBm

0.51 %pk
-0.40 %pk
0.29 °pk
66.83 Hz
-330.28 Hz
87.13dB
53.34 dB
0.00°
0.00dB
1.00000

b3

CF: 2.000000000 GHz
Trig: Free Run

Input Z- 50 Q
Corrections: Off
Freq Ref: Int (S)

Atten: 0 dB Format: 16-QAM

Info BW: 150 MHz Sym Rate: 100 MHz
Meas Intvl: 501 symbols
Equalizer: On

KEYSIGHT glpulilRF ac
oupling:
[:) Align: Auto

1 MS_IQ Meas Time (IQ) ¥

3 Spectrum

Scale/Div 10.00 dB Ref Value 0.00 dBm

"- "W] ""‘"l"‘"ﬁ W r"""“\{'w'rn

I ;’lr‘l"l“-l.!’]

ol
Ctr: 2 GHz
Res BW: 640.2 kHz

s Jleall

Info BW: 150 MHz

9 May 09, 2023
10:24:42 AM

4.851

|' ¥ | ||u||' ‘nir\]ml\‘ﬂlr,{llﬂ‘ il

fy

f
T ,nl |,’Vﬂu
Width: 150 MHz|

2MS_1Q Meas Time (I
Eye)
Scale/Div 556.48 m

Left: -1.00 symbols
Ref Sym: 0.00 symbols

4 MS_Metrics

EVM

Mag Error
Phase Error
Freq Error
I/Q Offset
SNR (MER)
Quad Error
Gain Imb.

Ref Value 45.444 m

TX Power

0.28 %rms
0.20 %rms
0.22 °rms

Figure 13-10 16QAM 2GHz Signal Analysed with an VSA

13.4.1 Programming Example 3 includes useful functions as listed below.

Confidential | 216

Width: 2.00 symbols
Sym Intvl: 500.00 symbols!

-19.85 dBm

0.73 %pk
0.58 %pk
-1.12 °pk
33.38 Hz
-80.36 dB
48.20 dB
0.00°
0.00dB

¥

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

o SendigmHalfWfm: Setup Proteus for the IQ HALF mode and format and download | and Q
waveforms.

e SendlgmOneWfm: Setup Proteus for the IQ ONE mode and format and download | and Q
waveforms.

o SendlgmTwoWjfm: Setup Proteus for the IQ TWO mode and format and download | and Q
waveforms.

e Normallq and Normallg2: Normalization for IQ baseband signals so the full DAC range is
used without any chance to experience any signal clipping.

o myResampling: Resampling of real or complex waveforms from one sample rate to another
(higher or lower than the original) in a near optimal mode.

e Get_Multi_Tone: Calculating arbitrary frequency multi-tone waveforms.

e Get_Qam: Calculating QPSK, QAM16/32/64/128/256/1024 waveforms at any symbol rate

with any number of symbols carrying random data. It supports raised cosine and sqrt(raised
cosine) baseband filtering.

e Get_Qam_Clock: Calculating symbol clock / N waveforms (N >=2) for symbol clock
generation.

e Interleave: |/Q waveform interleaving as required by mode ONE
o formatWfm2: Multi-level interleaving for mode 1Q mode TWO

13.4.1 Programming Example 3

% Baseband DUC example

This is an example of how to generate signals and RF modulated
ignals

simultaneously with the Proteus AWT. A complex modulated RF signal
s

H- o0 00 o°

o°

enerated by one channel and the corresponding envelope signal is

g
generated by another channel.

o°

clear;

close all;

clear variables;
clear global;
clc;

% Define IP Address for Target Proteus device descriptor

% VISA "Socket-Based" TCP-IP Device. Socket# = 5025

ipAddr = '127.0.0.1'; %'127.0.0.1"'= Local Host; % your IP here
pxiSlot = 0;

o

s Instrument setup

cType = "LAN"; S"LAN" = VISA or "DLL" = PXI
if cType == "LAN"
connPar = ipAddr;
else
connPar = pxiSlot; % Your slot # here, o for manual
selection
end

Confidential | 217

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

paranoia level = 0; % 0, 1 or 2

% Open Session and load libraries

[inst, admin, model, slotNumber] = ConnecToProteus (cType, connPar,
paranoia level);

% Report model
fprintf ('Connected to: %s, slot: %d\n', model(l), slotNumber (1l)):;

% Reset AWG
inst.SendScpi ('*CLS; *RST"') ;

[o)

% Get options using the standard IEEE-488.2 Command
optstr = getOptions(inst);

% AWG Settings

duc_ig mode =1; % 0 = HALF, 1 = ONE, 2 =
TWO, 3 = NCO

sample rate dac = 9E9;

rf channel =1;

rf segment = 1;

baseband channel = 3;

baseband segment = 3;

o

% Type of signal for test
% 1 = 802.11lax, 2 = 802.11lad, 3 = Multi-Tone, 4 = QAM

signal type = 1;

carrier freq = 2.412E9;

carrier freqg 2 = 2.0E9; $ For IQ Mode 2
baseband mode = 2; % 1 = envelope, 2 = clock
(QAM)

% Envelope Tracking Settings

minimum pwr = -20.0; % dB vs. peak power
smoothing factor = 1000;

% Clock processing only makes sense for QAM

if signal type ~= 4 && baseband mode ==
baseband mode = 1;

end

fprintf (1, 'BASEBAND WAVEFORM CALCULATION\n');

o

% Baseband waveform parameter definition
switch signal type

case 1
interpolation factor = 8;
actual granularity = 16;
oversampling = 2;
smoothing factor = 0.001;
if baseband mode == 2
baseband mode = 1;
end
[wfm in, sample rate bb in] = Get Wlan ax(oversampling);
wfm in 2 = wfm in;

Confidential | 218

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

case 2
interpolation factor
actual granularity
smoothing factor
if baseband mode == 2
baseband mode = 1;
end

[wfm in, sample rate bb in]
wfm in 2

case 3
interpolation factor
actual granularity
num of tones
offset tone
spacing
oversampling
smoothing factor

[wfm in, sample rate bb in]
num of tones,

offset tone, ...

oversampling) ;
wfm in 2
case 4
interpolation factor
actual granularity

% modType Modulation
1 QPSK

% 2 QAM16

% 3 QAM32

% 4 QAM64

% 5 QAM128

% 6 QAM256

s 7 QAM512

% 8 QAM1024

modulation type
num of symbols
symbol rate
filter type

roll off
oversampling
smoothing factor

[wfm in, sample rate bb in]

Confidential | 219

4;
32;
0.005;

Get Wlan ad;
wfm in;

8;

16;

40;

15;

1E6;

1.1;

1000; %0.05

Get Multi Tone(

spacing,

1; % QPSK

2711;

100E6; %50E6

'sgrt'; % 'normal' or 'sqgrt'
0.15;

6;

0.001;

Get Qam(modulation type,
num of symbols,

symbol rate,

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

filter type, ...

roll off,

oversampling) ;
% Second baseband waveform for IQ Mode 2. It must be
consistent in

[o)

% sampling rate and time window with first waveform

modulation type 2 = 2; % 160QAM

num_ of symbols 2 = 2712; % Twice the symbols
symbol rate 2 = 100E6; %Twice the baud rate
filter type 2 = 'sqrt'; % 'normal' or 'sqgrt'
roll off 2 = 0.25;

oversampling 2 = 3; % Half the oversampling
smoothing factor = 0.001;

[wfm in 2, sample rate bb in 2] Get Qam(modulation type 2,

num of symbols 2,

symbol rate 2,
filter type 2,...
roll off 2,
oversampling 2);
% For QAM and clock baseband signal, clock waveform must be
calculated
if Dbaseband mode ==
baseband wfm = Get Qam Clock(num of symbols,
roll off,
oversampling, ...
4) ;
end

end
% Resampling must be carrier out for the DUC baseband sampling rate
sample rate bb out = sample rate dac / interpolation factor;

wfm length in = length(wfm in);

$Calculation of lenght of the interpolated waveform
wfm length out = floor (wfm length in * sample rate bb out /...
(sample rate bb in * actual granularity)) * actual granularity;

fprintf (1, 'BASEBAND WAVEFORM RESAMPLING\n') ;

5%%%5%%%5%5%%%%%%5%%%5%5%%% RESAMPLING 5%5%5%5%%%%%%5%5%%5%5%%%5%%%5%5%%%
» = myResampling (wfm in, wfm length out, true, 60);
wfm out 2 = myResampling(wfm in 2, wfm length out, true, 60);

if signal type == 4 && baseband mode ==

% Clock waveform resampling

baseband wfm = myResampling (baseband wfm, wfm length out, true,
60) ;
else

% Get envelope tracking waveform from RF waveform

(

baseband wfm, ref envelope] = Get Envelope (wfm out,

Confidential | 220

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

smoothing factor,

minimum pwr);
end

o\

Sample rate must be corected to compensate for the timing error
introduced by the granularity requirements
actual dac sample rate = wfm length out * interpolation factor *...
sample rate bb in / wfm length in;

o°

[o)

% Graph calculated waveforms in a proper way
fprintf (1, 'BASEBAND WAVEFORM GRAPHS\n');
if baseband mode == 1
% Show RF waveform in graph #1
% And raw envelope and smoothed envelope in Graph #2
DrawEnvelope (wfm out,
baseband wfm,
ref envelope,
sample rate bb out);
else
% Show unfiltered IQ and eye diagram in the top
% and filtered IQ and eye diagram in the bottom
DrawEyeDiagram(3, ...
1000,
actual dac sample rate / interpolation factor,
symbol rate,

roll off,
wfm out,
baseband wfm) ;
end
T%%%%5%%%%%%%%%%%%%%5%%%%%% DOWNLOAD RF WAVEFORM

90900000000000000000000000000

WAVEFORM DOWNLOAD AND ACTIVATION\n') ;

% All previous waveforms will be deleted from waveform memory

inst.SendScpi (':TRAC:DEL:ALL") ;

% Format and download RF Signal

switch duc_ig mode

case O
result = SendIgmHalfWfm(inst, ...
actual dac sample rate,...
interpolation factor,...
rf channel, ...
rf segment, ...
carrier freq,...
0.0,...
true, ...
wfm out, ...
16);
case 1
result = SendIgmOneWfm(inst,...

actual dac_ sample rate,...

interpolation factor,...

rf channel, ...

Confidential | 221

@meaq ELECTRONICS Proteus Programming Manual

rf segment, ...
carrier freq, ...
0.0,...
true, ...
wfm out, ...
16);

result = SendIgmOneWfm(inst,...

actual dac sample rate,...

interpolation factor, ...
rf channel + 1,...
rf segment + 1,...
carrier freq,...
-90.0, ...
true, ...
wfm out, ...
16);
case 2
result = SendIgmTwoWfm(inst, ...

actual dac sample rate,...

interpolation factor, ...
rf channel, ...

rf segment, ...
carrier freq,...
carrier freq 2,...
0.0,...

0.0,...

true, ...

wfm out, ...

wfm out 2, ...

16);

case 3
SetNco(inst, ...

sample rate dac,...
rf channel, ...
carrier freq,...
0.0,...
true);

for fr = 1E6:1E6:4500E6

inst.SendScpi (sprintf (':NCO:CFR1 %f', fr));
end

o° o\

o°

535553%55535%5%%%5%%%%%%%%% DOWNLOAD BB WAVEFORM
[y

9090000000000 00000000000000 0

% Format and download Baseband (Envelope or Clock) Signal
fprintf (1, 'BASEBAND WAVEFORM DOWNLOAD AND ACTIVATION\n');
switch duc_ig mode
case O
result = SendIgmHalfWfm (inst, ...
actual dac sample rate, ...
interpolation factor, ...

Confidential | 222

Rev.

1.4

@meaq ELECTRONICS Proteus Programming Manual

end

baseband channel, ...
baseband segment, ...
0.0,...

0.0,...

true, ...
baseband wfm, ...
16);

case 1

result = SendIgmOneWfm(inst,...
actual dac sample rate,...
interpolation factor,...
baseband channel, ...
baseband segment, ...
0.0,...
0.0,...
true, ...
baseband wfm, ...
16);

% It is recommended to disconnect from instrument at the end
if cType == "LAN"

inst.Disconnect () ;

else

end

admin.CloseInstrument (inst.InstrId);
admin.Close () ;

function result = SendIgmOneWfm (inst, ...

samplingRate, ...
interpol, ...
channel, ...
segment, ...

cfr, ...

phase, ...
applye6db, ...
myWfm, ...
dacRes)

% format Wfm and normalize waveform

gmyWfm = MyProteusInterpolation (myWfm, interpol, true);
myWfm NormalIg (myWfm) ;

myWfm Interleave (real (myWfm), imag (myWfm));

myWfm = myQuantization (myWfm, dacRes, 1);

% Select Channel
inst.SendScpi (sprintf (':INST:CHAN %d', channel));

inst.SendScpi ([':FREQ:RAST ' num2str (2.5E9)1);

% Interpolation factor for I/Q waveforms
switch interpol

Confidential | 223

Rev.

1.4

@meaq ELECTRONICS Proteus Programming Manual

case 2
inst.SendScpi (':SOUR:INT X2');

case 4
inst.SendScpi (':SOUR:INT X4');

case 8
inst.SendScpi (':SOUR:INT X8');
end
% DAC Mode set to 'DUC' and IQ Modulation mode set to 'ONE'
inst.SendScpi (':MODE DUC');
inst.SendScpi(':IQM ONE') ;

inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);

fprintf (1, sprintf ('DOWNLOADING WAVEFORM: %d samples\n',

length (myWfm))) ;

end

result = SendWfmToProteus(inst,...
samplingRate, ...
channel, ...
segment, ...
myWfm, ...
dacRes, ...
false);

fprintf (1, 'WAVEFORM DOWNLOADED!\n') ;
clear myWfm;

% Select segment for generation

fprintf (1, 'SETTING AWG OUTPUT\n');
inst.SendScpi (sprintf (' :FUNC:MODE:SEGM %d', segment));
% Output volatge set to MAX

inst.SendScpi (':SOUR:VOLT MAX') ;

oo

NCO set-up
% 6dB IQ Modulation gain applied
if applyé6db

inst.SendScpi (':NCO:SIXD1 ON') ;
else

inst.SendScpi (':NCO:SIXD1 OFF'") ;
end
% NCO frequency and phase setting
inst.SendScpi (sprintf (' :NCO:CFR1 %d', cfr));
inst.SendScpi (sprintf (':NCO:PHAS1 %d', phase));
% Activate outpurt and start generation
inst.SendScpi (':0UTP ON'") ;

fprintf (1, 'SETTING SAMPLING CLOCK\n');

% Set sampling rate for AWG as defined in the preamble.
inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);

Confidential | 224

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

function result = SendIgmHalfWfm (inst, ...
samplingRate, ...
interpol, ...
channel, ...
segment, ...
cfr, ...
phase, ...
apply6db, ...
myWfm, ...
dacRes)

myWfm = NormalIg(myWfm) ;
myWfmI = real (myWfm) ;

myWfmI = myQuantization (myWfmI, dacRes, 1);
myWfmQ = imag (myWfm) ;
myWfmQ = myQuantization (myWfmQ, dacRes, 1);

% Channel I is 2N - 1 and Channel Q is 2N
% If channel is even, then base channle number is corrected
if mod(channel, 2) ==
channel = channel - 1;
end
% Set temporary sampling rate for AWG.
inst.SendScpi ([':SOUR:FREQ:RAST ' num2str (2.5E9)1]);

res = inst.SendScpi ('*OPC?'");
% The Half mode requires setting two channels
inst.SendScpi (sprintf (' :INST:CHAN %d', channel));

inst.SendScpi (':MODE DUC') ;
inst.SendScpi (':IQM HALF');
% Interpolation factor for I/Q waveforms
switch interpol
case 2
inst.SendScpi (':INT X2'");

case 4
inst.SendScpi (':SOUR:INT X4');

case 8
inst.SendScpi (':SOUR:INT X8');
end

inst.SendScpi (sprintf (':INST:CHAN %d', channel + 1));

inst.SendScpi (':SOUR:MODE DUC') ;
inst.SendScpi (':SOUR:IQM HALF') ;

[o)

% Interpolation factor for I/Q waveforms
switch interpol

Confidential | 225

@meaq ELECTRONICS Proteus Programming Manual

case 2
inst.SendScpi (':SOUR:INT X2');

case 4
inst.SendScpi (':SOUR:INT X4');

case 8
inst.SendScpi (':SOUR:INT X8');
end
inst.SendScpi ([':SOUR:FREQ:RAST ' num2str (samplingRate)]);

% DAC Mode set to 'DUC' and IQ Modulation mode set to

% Waveform Downloading

% R i b b b b b b b b b b b b b b b b

fprintf (1, 'DOWNLOADING WAVEFORM I\n'");

result = SendWfmToProteus(inst,...
samplingRate, ...
channel, ...
segment, ...
myWfmI, ...
dacRes, ...
false);

fprintf (1, 'DOWNLOADING WAVEFORM o\n');

result = SendWfmToProteus(inst,...
samplingRate, ...
channel + 1,...
segment + 1,...
myWfmQ, . ..
dacRes, ...
false);

fprintf (1, 'WAVEFORMS DOWNLOADED!\n');

clear myWfm;

% Select segment for generation

fprintf (1, 'SETTING AWG OUTPUT\n');

% Q Channel

inst.SendScpi (sprintf (' :INST:CHAN %d', channel + 1));

inst.SendScpi (sprintf (' :FUNC:MODE:SEGM %d', segment + 1));

o)

% NCO frequency and phase setting
inst.SendScpi (sprintf (' :SOUR:NCO:CFR1 %d', cfr));
inst.SendScpi (sprintf (':SOUR:NCO:PHAS1 %d', phase));
if apply6db

inst.SendScpi (':SOUR:NCO:SIXD1 ON'");
else

inst.SendScpi (':SOUR:NCO:SIXD1 OFF');
end

% Output volatge set to MAX
inst.SendScpi (':SOUR:VOLT 0.5");

% Activate outpurt and start generation
inst.SendScpi (':0UTP ON'") ;

Confidential | 226

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

[o)

% I Channel is set up in the end as this is the physical active
output
% I Channel
inst.SendScpi (sprintf (' :INST:CHAN %d', channel));
inst.SendScpi (sprintf (' :FUNC:MODE:SEGM %d', segment));
% NCO frequency and phase setting
inst.SendScpi (sprintf (' :SOUR:NCO:CFR1 %d', cfr));
inst.SendScpi (sprintf (':SOUR:NCO:PHAS1 %d', phase));
if apply6db
inst.SendScpi (':SOUR:NCO:SIXD1 ON') ;
else
inst.SendScpi (':SOUR:NCO:SIXD1 OFF');
end

% Output volatge set to MAX
inst.SendScpi (':SOUR:VOLT 0.5");

% Activate outpurt and start generation
inst.SendScpi (':0UTP ON'");

fprintf (1, 'SETTING SAMPLING CLOCK\n');
% Set sampling rate for AWG as defined in the preamble.
inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);

end

function result = SendIgmTwoWfm (inst, ...
samplingRate, ...
interpol, ...
channel, ...
segment, ...
cfrl, ...
cfr2, ...
phasel, ...
phase2, ...
applyé6db, ...
myWfml, ...
myWfm2, ...
dacRes)

[myWfml, myWfm2] = NormallIg2 (myWfml, myWfm2) ;
myWfm = formatWfm2 (myWfml, myWfm2) ;
% Select Channel

inst.SendScpi (sprintf (' :INST:CHAN %d', channel));

inst.SendScpi ([':FREQ:RAST ' num2str (2.5E9)]);
% Interpolation factor for I/Q waveforms
switch interpol

case 2

inst.SendScpi (':SOUR:INT X2');

case 4

Confidential | 227

@TABOR‘ ELECTRONICS

inst.SendScpi(':

case 8
inst.SendScpi(':
end
% DAC Mode set to 'DUC'
% DAC Mode set to 'DUC'

Proteus Programming Manual

SOUR:INT X4');

SOUR:INT X8'");

'ONE'
'TWO'

and IQ Modulation mode set to
and IQ Modulation mode set to

inst.SendScpi (':MODE DUC');

inst.SendScpi (':IQM TWO'

) ;

inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);
fprintf (1, sprintf ('DOWNLOADING WAVEFORM: %d samples\n',
length (myWfm))) ;
result = SendWfmToProteus(inst,...
samplingRate, ...
channel, ...
segment, ...
myWfm, ...
dacRes, ...
false);
fprintf (1, 'WAVEFORM DOWNLOADED!\n') ;

clear myWfm;

[o)

fprintf (1, 'SETTING AWG
inst.SendScpi (sprintf (':

o)

% Output volatge set to

% Select segment for generation

OUTPUT\n") ;
FUNC:MODE:SEGM %d',
MAX

segment)) ;

inst.SendScpi (':SOUR:VOLT 0.5");

oo

NCO set-up
% 6dB IQ Modulation
if apply6db

gain applied

inst.SendScpi ('

inst.SendScpi(':
else

inst.SendScpi(':

inst.SendScpi ('
end

:NCO:SIXD1

NCO:SIXD2

NCO:SIXD1

:NCO:SIXD2

ON'");
ON'");

OFF"'") ;
OFF"'") ;

o)

% NCO frequency and
inst.SendScpi (sprintf (':
inst.SendScpi (sprintf (':
inst.SendScpi (sprintf (':
inst.SendScpi (sprintf (':

Q

inst.SendScpi (':0OUTP ON'

fprintf (1,

[o)

% Set sampling rate for

inst.SendScpi ([':FREQ:RAST '

phase setting

NCO:CFR1 %d',
NCO:CFR2 %4d',
NCO:PHAS1 %d',
NCO:PHAS2 %d',

cfrl));

cfr2));
phasel));
phase2));

% Activate outpurt and start generation

) ;

'"SETTING SAMPLING CLOCK\n');

AWG as defined in the preamble.
num2str (samplingRate)]) ;

Confidential | 228

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual

end
function SetNco (inst, ...
samplingRate, ...
channel, ...
cfr, ...
phase, ...
apply6db)
% Select Channel
inst.SendScpi (sprintf (' :INST:CHAN %d', channel));
fprintf (1, 'SETTING SAMPLING CLOCK\n'):;
inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);
% DAC Mode set to 'NCO'
inst.SendScpi (':MODE NCO');
% 'NCO' Settings
inst.SendScpi (sprintf (' :NCO:CFR1 %d', cfr));
inst.SendScpi (sprintf (':NCO:PHAS1 %d', phase));
if applyé6db
inst.SendScpi (':NCO:SIXD1 ON') ;
else
inst.SendScpi (':NCO:SIXD1 OFF'");
end
% Output volatge set to MAX
inst.SendScpi (':SOUR:VOLT 0.5");
% Activate outpurt and start generation
inst.SendScpi (':0UTP ON'");
$fprintf (1, 'SETTING SAMPLING CLOCK\n');
% Set sampling rate for AWG as defined in the preamble.
%$inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);
end
function result = SendWfmToProteus(inst, ...
samplingRate, ...
channel, ...
segment, ...
myWfm, ...
dacRes, ...
initialize)
if dacRes == 16
inst.SendScpi (':TRAC:FORM Ul6");
else
inst.SendScpi (':TRAC:FORM U8'") ;
end

$Select Channel
if initialize
inst.SendScpi (':TRAC:DEL:ALL") ;

inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);

end

Confidential | 229

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

inst.SendScpi (sprintf (' :INST:CHAN %d', channel));
inst.SendScpi (sprintf (' :TRAC:DEF %d, %d', segment,
length (myWfm))) ;
% select segmen as the the programmable segment
inst.SendScpi (sprintf (':TRAC:SEL %d', segment));
% format Wfm
% myWfm = myQuantization (myWfm, dacRes, 1);
% Download the binary data to segment
prefix = '":TRAC:DATA O0,"';

if (dacRes==16)
myWfm = uintl6 (myWfm) ;

myWfm = typecast (myWfm, 'uint8');
else
myWfm = uint8 (myWfm) ;
end
tic;
%res = inst.WriteBinaryData (':TRAC:DATA ', myWfm);
res = inst.WriteBinaryData (prefix, myWfm);

assert (res.ErrCode == 0);

% if dacRes == 16

% inst.SendBinaryData (prefix, myWfm, 'uintlé6');
% else

% inst.SendBinaryData (prefix, myWfm, 'uint8');
% end

if initialize
inst.SendScpi (sprintf (' :SOUR:FUNC:MODE:SEGM %d', segment))
% Output voltage set to MAX
inst.SendScpi (':SOUR:VOLT 0.5");
% Activate outpurt and start generation
inst.SendScpi (':0UTP ON'") ;
end

result = length (myWfm) ;
end

function resampling filter = GetResamplingFilter (
num of convolution samples,

resolution of filter,
bw fraction)

o

Creation of sinc lookup table
The NumOfConvolutionSamples paramters controls the quality of

o°

the

o°

resampling filter in terms of roll-off and attenuation at the
stop

o

band. The more, the better quality, the longer calculation time.
3 ResFilter sets the number of values per sample time to be
included in

\O

Confidential | 230

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

o°

the look-up table. The more, the better quality, the longer
calculation time.
bwFrac reduces de BW of the filter to avoid aliasing problems

o\

o°

caused
% by the roll-off of the resampling filter.
A resampling filter object is created with the lookup table for

o

o\

it

o\

(just one side as it is symmetrical) and all the associated
parameters.

resampling filter.num of samples = num of convolution samples;

resampling filter.resolution = resolution of filter;

resampling filter.bw fraction = bw fraction;

sinc_length = floor (num of convolution samples *
resolution of filter / bw_fraction);

resampling filter.filter = 0:(sinc_length);

resampling filter.filter = resampling filter.filter /
resolution of filter;

o°

resampling filter.filter = resampling filter.filter * bw fraction;
% Basic filter shape is ideal low pass filter (sinc)
resampling filter.filter = sinc(resampling filter.filter);

[o)

% Flattop window is applied to improve flatness and stop band
rejection

windowed filter = flattopwin(2 * sinc length);

windowed filter = windowed filter (sinc_length:end);

resampling filter.filter = resampling filter.filter .*
windowed filter';
end
function output wfm = myResampling (input wfm,

output wfm length,

is circular,

quality,

resampling filter)
% This funtion resamples the input waveform (inWfm) to generate a new
% waveform with a new length (outWl). New length can be longer
(upsampling)
% or shorter (downsampling) than the original one. The new waveform
can be
% selfconsistent for loop generation (isCirc == true) or not for singe
shot

o)

% generation.

input wfm length = length (input wfm);
% Sampling rate ratio (>1.0, upsampling)
sampling ratio = double (output wfm length) /
double (input wfm length);
% If resampling filter exists it is not calculated so time is
saved
% when calling the resampling function more than once
if ~exist('resampling filter', 'wvar') ||
isempty (resampling filter)
% Default parameters for resampling filter
filter resolution = 50000; %50000

bw fraction = 1.0; %0.98;

Confidential | 231

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

A
"
(@)

if sampling ratio
bw fraction = 0.98;

end

resampling filter

GetResamplingFilter (quality,
filter resolution,

bw fraction);

end
% The parameters of the resampling filter are part of the
associated

% object
convolution length = resampling filter.num of samples;
filter resolution = resampling filter.resolution;
resampling filter length = length(resampling filter.filter);
bw fraction = resampling filter.bw fraction;
% For undersampling filter, the amplitude of the resampling filter
must

% be corrected by the relative BW

if sampling ratio < 1.0

o)

% The distance for samples in the input (measured in samples

of the
% output) must be corrected for undersampling as well in order
to
% preserve SFDR
convolution length = floor (convolution length /
(sampling ratio * bw_ fraction));
resampling filter.filter = resampling filter.filter *
(sampling ratio * bw_ fraction);
else
convolution length = floor (resampling filter.num of samples /
bw fraction);
end

[o)

% Output waveform is initialized to "all zeros"
output wfm = zeros(l, output wfm length);
% Convolution loop for each output sample
if sampling ratio >= 1.0
mult factorl = bw fraction * filter resolution;
else
mult factorl = bw fraction * filter resolution *
sampling ratio;
end

for 1 = 0: (output_wfm length - 1)
% Index for the central sample to process in the input wfm
central sample = i / sampling ratio;
central sample int = round(central sample);
% Contribution for all the participating samples form the
input is
% accumulated on the current output sample
for j = (central sample int - convolution length):...
(central sample int + convolution length)
% Actual fractional distance to the input sample

time distance = abs(central sample - J);

Confidential | 232

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

% Distance is converted to a relative integer index to the
% resampling filter (lookup table)
time distance = round(mult factorl * time distance);

% If convolution is circular the initial samples are used
at
% the end and the end samples are used at the beginning.
input wfm index = j;
if is circular
input wfm index = mod(input wfm index,
input wfm length);
end
% If the pointer to the resampling filter is within teh
limits
% of the lookup table, the contribution of the input
sample is
% added to the current output sample
if time distance < resampling filter length &&
input wfm index >=0 &&
input wfm index < input wfm length
output wfm(i + 1) = output wfm(i + 1) +...
input wfm(input wfm index + 1) *
resampling filter.filter (time distance + 1);
end
end
end
end

function output wfm = LimitBW (input wfm,
bw fraction)

num of peak samples = round(l.0 / bw fraction);
output wfm = input wfm;
for k = 0: (length(input wfm) - 1)
ref sample = k + 1;
for j = (k - num of peak samples):(k + num of peak samples)

current sample = int32(mod(j, length(input wfm)) + 1);
if input wfm(current sample) > output wfm(ref sample)
output wfm(ref sample) = input wfm(current sample);
end
end
end
end

function [waveform, Fs] = Get Wlan ad()
Generated by MATLAB(R) 9.14 (R2023a) and WLAN Toolbox 3.6 (R2023a).
Generated on: 19-Apr-2023 18:52:47

o°

o°

%% Generating 802.1lad waveform

% 802.11lad configuration

dmgCfg = wlanDMGConfig('MCS', 'l6',
'TrainingLength', 0,
'TonePairingType', 'Static',
'PSDULength', 1000,

Confidential | 233

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

'AggregatedMPDU', false,
'LastRSSI', O,
'Turnaround', false);

num of packets = 1;

idle time = 2E-6;

% input bit source:

in = randi ([0, 1], 1000, 1);

% Generation

waveform = wlanWaveformGenerator (in, dmgCfg,
'NumPackets', num of packets,
'IdleTime', idle time,
'WindowTransitionTime', 6.0606e-09,
'ScramblerInitialization', 2);

Fs = wlanSampleRate (dmgCfg); % Specify the sample rate of the
waveform in Hz

end
function [waveform, Fs] = Get Wlan ax(oversampling)
% 802.11lax configuration
heSUCfg = wlanHESUConfig('ChannelBandwidth', 'CBW1l60',

'NumTransmitAntennas', 1,
'NumSpaceTimeStreams', 1,
'SpatialMapping', 'Direct',
'PreHESpatialMapping', false,
'MCS', 5,

'DCM', false,
'ChannelCoding', 'LDPC',
'APEPLength', 100,
'GuardInterval', 3.2,
'"HELTFType', 4,
'UplinkIndication', false,
'BSSColor', O,
'SpatialReuse', O,
'TXOPDuration', 127,
'HighDoppler', false,
'NominalPacketPadding', 0);

% input bit source:
in = randi ([0, 1], 10000, 1);

num of packets = 1;
idle time = 20E-6;
% Generation
waveform = wlanWaveformGenerator (in, heSUCfgqg,
'NumPackets', num of packets,
'IdleTime', idle time,
'OversamplingFactor', oversampling,
'ScramblerInitialization', 93,
'WindowTransitionTime', 1e-07);

Confidential | 234

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

Fs = oversampling * wlanSampleRate (heSUCfg, 'OversamplingFactor',
1);
end
function [waveform, Fs] = Get Multi Tone (num of tones,
offset tone, ...
spacing,
oversampling)
% Compute maximum frequency component in the signal
max freq = (num of tones - 1) * spacing / 2.0;
max freq = max freq + spacing * offset tone;
% Sample rate for calcualtion will be twice the maximum freqg x
% oversampling factor
Fs = oversampling * 2.0 * max freq;
% Tone frequency calculation
tone freq = 0: (num of tones - 1);
tone freq = tone freq - (num of tones - 1.0) / 2.0;
tone freq = spacing * tone freq;
tone freq = tone freq + spacing * offset tone;
% Time window will be the minimum one: 1 / spacing
% It must be double when the number of tones is even for
symmetrical
% spectrum around carrier frequency.
if mod(num of tones,2) == 1
time window = 1.0 / spacing;
else
time window = 2.0 / spacing;
end

[o)

% Waveform length must be an integer
wfm length = round(Fs * time window) ;
% Fs must be recalculated after rounding wavweform length
Fs = wfm length / time window;
% Time values for samples
x data = 0 :(wfm length -1);
x data = x data / Fs;
% Phase distribution for PAPR reduction is selected. Newman = 2.
tones phase = PhaseDistribution (2, num of tones);
% Waveform data is initialized to zero
waveform = zeros(1l, wfm length);
% The contribution of each tone is added to the waveform
for k = 1 : num of tones
waveform = waveform +
exp(li * (x data * 2 * pi * tone freq(k) +

tones phase (k)));

end
end
function phase table = PhaseDistribution(dist type, number of tones)
switch dist type
case 1

Qo

% Random

Confidential | 235

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

phase table = 2.0 * pi .* (rand(l, number of tones) -
0.5);
case 2
% Newman (near-optimal for equal amplitude tones)
phase table = l:number of tones;
phase table = wrapToPi(-(pi / number of tones) .*

(1.0 - phase table .* phase table));

case 3
% Rudin (near optimal for equal amplitude tones when
number of
$ tones = 2”°N)
num of steps = intl6 (round(log (number of tones) /

log(2))):

if 2”num of steps < number of tones
num of steps = num of steps + 1;
end

num of steps = num of steps - 1;
phase table(l:2) = 1;
% Rudin sequence construction
for n=l:num of steps
m = intl6 (length(phase table) / 2);
phase table = [phase table, phase table(l : m),...
-phase table(m + 1 : 2 * m)];
end
% Conversion to radians
phase table = -0.5 * pi .* (phase table(l
number of tones) - 1);
end
end

function [symbol] = getIgMap (data, bPerS)

if bPerS == 5 % QAM32 mapping
lev = 6;
data = data + 1;
data (data > 4) = data(data > 4) +
data (data > 29) = data(data > 29)

’

1
+ 1;

elseif bPerS == % QAM128 mapping
lev = 12;
data = data + 2;
data (data > 9) = data(data > 9) + 4;
data (data > 21) = data(data > 21) + 2;
data(data > 119) = data(data > 119) + 2;
data (data > 129) = data(data > 129) + 4;

—~ e~~~

elseif bPerS == % QAM512 mapping
lev = 24;
data = data + 4;
data(data > 19) = data(data > 19) + 8;

Confidential | 236

@meaq ELECTRONICS Proteus Programming Manual

Rev.

1.4

data (data > 43) = data(data > 43) + 8;

data(data > 67) = data(data > 67) + 8;

data(data > 91) = data(data > 91) + 4;

data (data > 479) = data(data > 479) + 4;

data (data > 499) = data(data > 499) + 8;

data (data > 523) = data(data > 523) + 8;

data (data > 547) = data(data > 547) + 8;

else
lev = 2 ~ (bPerS / 2); % QPSK, QAM16, QAM64, QAM256, QAMI1024

end

symbI = floor (data / lev);
symbQ = mod (data, lev);
lev = lev / 2 - 0.5;

symbI = (symbI - lev) / lev;
symbQ = (symbQ - lev) / lev;
symbol = symbI + 1i * symbQ;

end

function dataOut = getRnData (nOfS, bPerS)
maxVal = 2 ~ bPerS;
dataOut = maxVal * rand(l, nOfS);
dataOut = floor (dataOut) ;

dataOut (dataOut >= maxVal) = maxVal - 1;
end
function out vector = ZeroPadding(in vector, oversampling)
out vector = zeros(l, oversampling * length(in vector));
out vector (l:oversampling:length(out vector)) = in vector;
end
function [waveform, Fs] = Get Qam(modulation type,
num of symbols,
symbol rate,
filter type,...
roll off,
oversampling)
% modType Modulation
$ 1 QPSK
% 2 QAM16
% 3 QAM32
% 4 QAM64
% 5 QAM128
% 6 QAM256
s 7 QAM512
% 8 QAM1024
bits per symbol = [2, 4, 5, 6, 7, 8, 9, 10];
bits per symbol = bits per symbol (modulation type);
oversampling = round(oversampling) ;

% Create IQ for QPSK/QAM

Confidential | 237

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

% Get symbols in the range 1..2"bps and Map to IQ as Complex

Symbol
data = getRnData (num of symbols, bits per symbol);
[waveform] = getIgMap (data, bits per symbol);

% Adapt I/Q sample rate to the Oversampling parameter
waveform = ZeroPadding (waveform, oversampling);

% Calculate baseband shaping filter
% accuracy 1is the length of-1 the shaping filter
accuracy = 512;

sfilter type = 'sqgrt'; % 'normal' or 'sqgrt'

baseband filter = rcosdesign(roll off,
accuracy,
oversampling,

filter type);

% Apply filter through circular convolution and calculate Fs
waveform = cconv(waveform, baseband filter, length(waveform));
Fs = symbol rate * oversampling;

end

function [envelope wfm, ref envelope] = Get Envelope (wfm out,
smoothing factor, minimum pwr)
% ENVELOPE CALCULATION
% Envelope wfm made from the module of the IQ complex wfm
envelope wfm = abs(wfm out);
% LPF
envelope wfm = LimitBW(envelope wfm, smoothing factor);
envelope wfm = movmean (envelope wfm, 10);
senvelope wim = LimitBW(envelope wfm, bw factor);
% Minimum level processing
minimum pwr = max (envelope wfm) * 10" (minimum pwr / 20.0);
envelope wfm(envelope wfm < minimum pwr) = minimum pwr;
% Normalization so 0 will be mapped to the lowest DAC value and
max 1is
% mapped to +1.0. wfm out is always positive
if max(envelope wfm) > 0.0

envelope wfm = 2.0 * (envelope wfm / max(envelope wfm) - 0.5);
else

envelope wfm = envelope wfm + 1.0;
end
ref envelope = abs(wfm out);
if max(ref envelope) > 0.0

ref envelope = 2.0 * (ref envelope / max (ref envelope) - 0.5);
else

ref envelope = ref envelope + 1.0;
end

end

function waveform = Get Qam Clock(num of symbols,
roll off,

Confidential | 238

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

oversampling,
div_factor)

oversampling = round(oversampling);
div_factor = round(div_factor);

% Create IQ for QPSK/QAM

% Get symbols in the range 1..2"bps and Map to IQ as Complex
Symbol

waveform = zeros(l, num of symbols);

for k = 0:(div_factor - 1)

waveform((k + 1):(2 * div_factor) :length (waveform)) = 1.0;
end
for k = div_factor: (2 * div_factor - 1)

waveform((k + 1):(2 * div_factor) :length(waveform)) = -1.0;
end

% Adapt I/Q sample rate to the Oversampling parameter
waveform = ZeroPadding(waveform, oversampling);

% Calculate baseband shaping filter
% accuracy 1is the length of-1 the shaping filter
accuracy = 512;

filter type = 'sqgrt'; % 'normal' or 'sgrt'

baseband filter = rcosdesign(roll off,
accuracy,
oversampling,

filter type);

% Apply filter through circular convolution and calculate Fs
waveform = cconv(waveform, baseband filter, length (waveform));
end

function DrawEnvelope(wfm out,
envelope wfm,
ref envelope,
sample rate bb out)
% Two plots
tiledlayout (1,2);

x0=100;

y0=100;

width=1000;

height=800;

set (gcf, 'position', [x0,y0,width,height]);

wfm length out = length (wfm out);
nexttile;
x data = 0 : (wfm length out - 1);

x data = x data / sample rate bb out;
plot (x _data, real(wfm out));

Confidential | 239

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

hold;
plot (x data, imag(wfm out));
title(strcat ('IQ Waveform:', num2str(wfm length out),' samples

num2str (sample rate bb out / 1E6), 'MS/s'));
xlabel ('Seconds') ;

nexttile;

plot (x _data, ref envelope);

hold;

plot (x _data, envelope wfm);

ylim([-1.0 1.171);

title(strcat ('Envelope Waveform:', num2Zstr (wfm length out),'
samples @', ...

num2str (sample rate bb out / 1E6), 'MS/s'));

xlabel ('Seconds') ;

end

function DrawEyeDiagram (eye width,
max_ symbol shown,
sample rate,
symbol rate,
roll off,
wfm in,
clock wfm)
% For better graph accuracy, samples per symbol > = 100
interpol factor = ceil(sample rate / symbol rate);
if interpol factor < 100
interpol factor = ceil (100 / interpol factor);
new wfm length = interpol factor * length(wfm in);
wfm in = myResampling(wfm in, new wfm length, true, 60);
clock wfm = myResampling(clock wfm, new wfm length, true, 60);
sample rate = interpol factor * sample rate;
end
% Graph data definition
size window in samples = ceil (eye width / symbol rate *
sample rate);
size window in samples = ceil(size window in samples / 2);
symbol shift = round(0.5 / symbol rate * sample rate);
% Zero crossing for clock signal
zero_crossings = zeros(l, max symbol shown);
previous state = clock wfm(1l);
filter type = 'sqrt'; % 'normal' or 'sqgrt'
baseband filter = rcosdesign(roll off, 60,
round (sample rate / symbol rate) , filter type);
baseband filter = baseband filter / sum(baseband filter);
% Zero crossing processing
counter = 1;

for k = 2:1ength(clock wfm)
if clock wfm(k) >= 0.0 && previous state <= 0.0 |[...

Confidential | 240

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

clock wfm(k) <= 0.0 && previous state >= 0.0
zero_crossings (counter) = k - 1;
previous state = clock wfm(k);
if counter > max symbol shown
break;
else
counter = counter + 1;
end
end
end
% Four plots
tiledlayout(2,2);

x0 100;

y0 = 100;

width = 1000;

height = 800;

set (gcf, "'position', [x0,y0,width,height]);

nexttile;

plot (wfm in);

hold;

const diagram = wfm in(zero crossings(2:counter - 2) +
symbol shift);

scatter (real (const diagram), imag(const diagram), 20, [1, 1, O],
'filled');

max ampl = max([max(abs(real(wfm in))), max(abs(imag(wfm in)))]);

xlim([-max ampl max ampl]);
ylim([-max ampl max ampl]);
(

title('Constellation Unfiltered');
nexttile;
base x data = -size window in samples:l:size window in samples;

base x data = base x data / sample rate;
hold flag = true;

for k = l:counter
if (zero crossings (k) - size window_in samples) >= 1 &&...
(zero _crossings (k) + size window in samples) <=
length (wfm in)
plot (base x data,
real (wfm_in(zero_ crossings (k) -
size window in samples + symbol shift:...
zero crossings (k) +
size window in samples + symbol shift)));
if hold flag
hold on;
hold flag = false;
end
end

Confidential | 241

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

end

title('Eye Diagram Unfiltered');
xlabel ('Symbol Period');

nexttile;
% Apply filter through circular convolution
clock wfm = cconv(clock wfm, baseband filter, length(clock wfm));

% Apply filter through circular convolution and calculate Fs
wfm in = cconv(wfm in, baseband filter, length(wfm in));

counter = 1;

for k = 2:1length(clock wfm)
if clock wfm(k) >= 0.0 && previous state < 0.0 []...
clock wfm(k) < 0.0 && previous state >= 0.0
zero_crossings (counter) = k;
previous state = clock wfm(k);
if counter > max symbol shown
break;
else
counter = counter + 1;
end
end
end

plot (wfm in);

const diagram = wfm in(zero crossings(2:counter - 2) +
symbol shift);

hold;

scatter (real (const diagram), imag(const diagram), 20, [1, 1, O],
'filled');

max ampl = max([max(abs(real(wfm in))), max(abs(imag(wfm in)))]1);

xlim([-max ampl max ampl]);
ylim([-max ampl max ampll]);

title('Constellation Filtered');
nexttile;
hold flag = true;

for k = l:counter
if (zero_crossings(k) - size window_in samples) >= 1 &&...
(zero _crossings (k) + size window in samples) <=
length (wfm in)
plot (base x data, real(wfm in(zero crossings (k) -
size window_ in samples + symbol shift:...
zero _crossings (k) + size window in samples +
symbol shift)));
if hold flag
hold on;

Confidential | 242

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

hold flag = false;
end
end
end

title('Eye Diagram Filtered');
xlabel ('Symbol Period');

end
function [inst,...
admin, ...
modelName, ...
sId] = ConnecToProteus(cType,

connStr,
paranoia level)

o

Connection to target Proteus
cType specifies API. "LAN" for VISA, "DLL" for PXI
connStr is the slot # as an integer (0 for manual selection) or IP
adress
as an string
Paranoia Level add additional checks for each transfer. 0 = no
hecks.
1 = send OPC?, 2 = send SYST:ERROR?

o°

o° oo

o°

o

o

It returns

inst: handler for the selected instrument

admin: administrative handler

modelName: string with model name for selected instrument (i.e.
"p9484M)

% sId: slot number for selected instrument

o° o

o

pid = feature('getpid');
fprintf (1, '\nProcess ID %d\n',pid);

dll path = 'C:\\Windows\\System32\\TEPAdmin.d11l";
admin = 0;
sId = 0;
if cType == "LAN"
try

connStr = strcat ('TCPIP::',connStr,'::5025::S0CKET") ;
inst = TEProteusInst (connStr, paranoia level);

res = inst.Connect();
assert (res == true);
modelName = identifyModel (inst);
catch ME
rethrow (ME)
end
else

asm = NET.addAssembly (dll path);

import TaborElec.Proteus.CLI.*
import TaborElec.Proteus.CLI.Admin.*

Confidential | 243

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

import System.*

admin = CProteusAdmin (@OnLoggerEvent) ;
rc = admin.Open() ;
assert (rc == 0);

try
slotIds = admin.GetSlotIds() ;
numSlots = length(size(slotIds));
assert (numSlots > 0);

% If there are multiple slots, let the user select one
sId = slotIds (1)
if numSlots > 1
fprintf ('\n%d slots were found\n', numSlots);
for n = l:numSlots
sId = slotIds(n);
slotInfo = admin.GetSlotInfo (sId);
if ~slotInfo.IsSlotInUse
modelName = slotInfo.ModelName;
if slotInfo.IsDummySlot && connStr ==
fprintf (' * Slot Number:%d Model %s [Dummy
Slot].\n', sId, modelName):;
elseif connStr ==
fprintf (' * Slot Number:%d Model %s.\n',
sId, modelName) ;
end
end
end
pause (0.1);
if connStr ==
choice = input ('Enter SlotId '");
fprintf ('\n"');
else
choice = connStr;
end
sId = uint32 (choice);
slotInfo = admin.GetSlotInfo (sId);
modelName = slotInfo.ModelName;
modelName = strtrim(netStrToStr (modelName)) ;
end

% Connect to the selected instrument

should reset = true;

inst = admin.OpenInstrument (sId, should reset);
instId = inst.InstrId;

catch ME
admin.Close () ;
rethrow (ME)
end
end
end

Confidential | 244

@meaq ELECTRONICS Proteus Programming Manual

function model = identifyModel (inst)
idnStr = inst.SendScpi ('*IDN?') ;
idnStr = strtrim(netStrToStr (idnStr.RespStr));
idnStr = split(idnStr, ',");

if length(idnStr) > 1
model = idnStr(2);
else
model ='";
end
end

function options = getOptions (inst)
optStr = inst.SendScpi ('*OPT?"'");

optStr = strtrim(netStrToStr (optStr.RespStr));
options = split (optStr, ','):
end
function [str] = netStrToStr (netStr)
try
str = convertCharsToStrings (char (netStr));
catch
str = '";
end
end

function retval = myQuantization (myArray, dacRes, minLevel)

maxLevel = 2 ~ dacRes - 1;
numOflevels = maxLevel - minLevel + 1;

retval = round((numOfLevels .* (myArray + 1) - 1) ./ 2);
retval = retval + minLevel;
retval (retval > maxLevel) = maxLevel;

retval (retval < minLevel) minLevel;
end
function outWfm = Interleave2 (wfmI, wfmQ)
wfmLength = length (wfmI) ;
if length(wfmQ) < wfmLength
wfmLength = length (wfmQ) ;

end

SwfmLength = 2 * wfmLength;
outWfm = uint8(zeros(l, 2 * wfmLength));

outWfm(1l:2: (2 * wfmLength - 1)) = wfmI;
outWfm(2:2: (2 * wfmLength)) = wfmQ;

end

function outWfm = formatWfm2 (inWfml, inWfm2)

Confidential | 245

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

$formatWfm2 This function formats data for two I/Q streams to be
dwnloaded

%to a single segment in Proteus to be generated in the IQM Mode 'TWO'
All waveforms must be properly normalized to the -1.0/+1.0 range.
All waveforms must have the same length

o\

o°

o°

Formatting requires to go through the following steps:
1) quantize samples to 16-bit unsigned integers
2) swap the LSB and MSB as MSBs will be sent first for this

o\

o°

mode

o\

3) convert the uintlé array to an uint8 array of twice the
size

o\

Final wfm is MSB, LSB, MSB, LSB,...

inWfmIl = typecast (swapbytes (uintl6 (myQuantization (real (inWfml),
16, 1))),'uint8");

inWfmQl = typecast (swapbytes (uintl6 (myQuantization (imag (inWfml),
16, 1))),'uint8'");

inWfmI2 = typecast (swapbytes (uintl6 (myQuantization (real (inWfm2),
16, 1))),'uint8");

inWfmQ2 = typecast (swapbytes (uintl6 (myQuantization (imag (inWfm2),
16, 2))),'uint8");

% Sequence MSBI1, MSBQl, MSBQ2, MSBI2, LSBI1, LSBQl, LSBQ2, LSBI2

% This is done in three interleaving steps

outWfmI = Interleave2 (inWfmIl, inWfmQ2):;

outWfm = Interleave2 (inWfmQl, inWfmI2);

outWfm = Interleave? (outWfmI, outWfm);

% Format as 16 bit integers as this is how waveforms are
transferred
outWfm = uintl6 (outWfm(l:2:length (outWfm))) +
256 * uintl6 (outWfm(2:2:1length (outWfm))) ;

end
function shifted vector = ShiftVector (input wfm, shifts)
vector 1 = length (input wfm);
shifts = shifts - 1;
shifted vector = input wfm(mod((l:vector 1) + shifts, vector 1) +
1)
end
function zeroed vector = InsertZeros(input vector, isEven)
if isEven
zeroed vector = zeros(l, 2 * length(input vector));
else
zeroed vector = zeros(l, 2 * length(input vector) - 1);
end
zeroed vector(l:2:length(zeroed vector)) = input vector;
end

function [interpol filter, max response] =
GetProteusInterpolFilter (interpolation factor)

Confidential | 246

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

basic 2x filter taps = [6, 0, -19, 0, 47, 0, -100, O, 192, O, -
342, 0,...

572, 0, -914, 0, 1409, 0, -2119, 0, 3152, 0, -4729, 0, 7420, O,...

-13334, 0, 41527, 65536, 41527, 0, -13334, 0, 7420, 0, -4729,

0,...
3152, 0, =-2119, 0O, 1409, 0, -914, 0, 572, 0, -342, 0, 192, 0, -
100, ...
o, 47, 0, -19, 0, 6];
switch interpolation factor
case 2
interpol filter = basic 2x filter taps;
case 4
interpol filter = InsertZeros(basic 2x filter taps,
false);
interpol filter = conv(interpol filter,

basic 2x filter taps);

case 8
interpol filter = InsertZeros(basic 2x filter taps,
false);
interpol filter = conv(interpol filter,
basic 2x filter taps);
interpol filter = InsertZeros(interpol filter, false);
interpol filter = conv(interpol filter,
basic 2x filter taps);
end

% Filter normalization for 0dB gain at OHz
interpol filter = interpol filter/sum(interpol filter);
interpol filter = interpolation factor * interpol filter;

% Worst case maximum output abs (amplitude) for
max response = 0.0;

for k = 0: (interpolation factor - 1)
current max response =
sum(abs (interpol filter ((k+l) :interpolation factor:length(interpol fil
ter))));
if current max response > max response
max response = current max response;
end
end
end

function output wfm = MyProteusInterpolation (input wfm,
interpol factor, apply norm)
% Function used in traditional resampling
% Expansion by zero-padding
output wfm = zeros(l, interpol factor * length (input wfm));
output wfm(l:interpol factor:end) = input wfm;
% "Ideal" Interpolation filter

Confidential | 247

@meaq ELECTRONICS Proteus Programming Manual

[interpol filter, max response] =
GetProteusInterpolFilter (interpol factor);
shifts = floor (length(interpol filter) / 2);

%convolution

output wfm = cconv (output wfm, interpol filter,
length (output wfm)) ;

output wfm = ShiftVector (output wfm, shifts);

if apply norm

output wfm = input wfm / max(abs (output wfm));

end
end

function outWfm = NormalIqg(wfm)

maxPwr = max (abs (wfm)) ;
outWfm = wfm / maxPwr;
end
function [outWfml, outWfm2] = NormalIg2 (wfml, wfm2)
maxPwr = max (abs (wfml) + abs(wfm2));
outWfml = wfml / maxPwr;
outWfm2 = wfm2 / maxPwr;
end

function outWfm = Interleave (wfmI, wfmQ)

wfmLength = length (wfmI) ;
outWfm = zeros(l, 2 * wfmLength);

outWfm(1l:2: (2 * wfmLength - 1)) = wfmI;

outWfm(2:2: (2 * wfmLength)) = wfmQ;
end

Confidential | 248

Rev. 1.4

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

13.5 Using the Digitizer to Capture Baseband and RF
Signals

13.5.1 Programming Example 4 shows the following:

1. The way to use the Task List and sequencing in the generation side.
2. The usage of the ADC with or without using DDC

3. The way to synchronize the DUC and the DDC for coherent demodulation. A pulsed RF signal
is used as a convenient signal to show the previous items.

This example generates a simple radar RF pulse using the AWG, captures it using the digitizer, and
analyzes the captured waveforms. Pulse parameters such as pulse width, pulse repetition interval
(PRI), and carrier frequency can be arbitrarily defined. The RF pulse is generated using the DUC by
any channel of the AWG section of Proteus using IQ mode ONE (refer to 13.4.1 Programming
Example 3). The modulating signal consists of a square pulse in the | component, while the Q
component is set to all zeros. This application example takes the pulse parameters and the AWG
requirements in terms of sample rate, interpolation factor, minimum segment length and
granularity to minimize waveform memory by defining the signal through the sequencing of
several simpler segments. It also automates the creation of the task list resulting in the defined
pulse using the lowest number of segments with the smallest possible size. The sequence also
generates an internal task trigger to trigger the acquisition of multiple frames by the digitizer. This
trigger signal is aligned with the beginning of the transmission of the pulse (see the figure below).

Fle it View Inset Tools Desktop Windk
Deds 208 rE

CH11/Q Waveforms # 1 CH1 Waveform Spectrum CH1 Coherence Drift = 0.327714, Degrees pp
e — T 70.35 T T

B

’ | “i:'JI

d /JM 7
RN My

Figure 13-11 Radar pulse analysis of one of the acquired frames. The graph in the left shows
the demodulated (by the DDC) | and Q signals for the selected frame. The one in the center
shows the FFT of the complex demodulated signal. The graph in the right shows the evolution
in time of the DUC to the DDC phase for all frames. The peak-to-peak excursion is shown in the
title of the graph. The MATLAB slider control at the bottom allows for the frame selection.
This acquisition has been made while the NCOs in the DDC and the DUC work in the coherent
mode.

g
a

ADC Leveis

&

Confidential | 249

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

The digitizer-related functionality captures any number of frames. Each frame is automatically
set-up to capture the pulse section of the signal. Each frame is triggered by the internal task trigger
generated by the task list being executed by the AWG section. The acquisition of the RF signal can
be made in the direct mode so the complete modulated signal will be stored in the memory (Figure
13-13), or using the DDC (Digital Down Converter), so a demodulated pulse is stored as a complex
1Q signal (Figure 13-12, Figure 13-13).

4 Figure 1
File Edt View Inset Tools Desktop Window Help

Dede 208 rE

CH?1 1iQ Waveforms # 1 CH1 Waveform Spectrum CH1 Coherence Drift = 39.078314, Degrees pp
T T 5 T T

8000 [~

L A0 Y
6000 - - -

4000

8
T

2000 -

ADC Level
s
|
L
dB
&
s
I
Deg
B

[
-]
S
&

4000 |- - 50 ‘

5000 |-

8000 |- e e — J 80 L -150 !
5 0 5 10 15 995 1000 1005 0 50 100 150 200
microseconds MHz # of Acquisition

Figure 13-12 Radar pulse analysis when the DUC and DDC NCOs do not work in the coherent
mode. The graph in the right shows the linear evolution of the phase caused by the tiny
frequency difference between the NCOs in the transmitter and the receiver. The way the pulse
is split between the | and Q components (shown in the left), will change significantly
depending on the selected frame.

The NCO frequencies of the DUC and DDC are set to the same frequency, so modulation and
demodulation is applied to the same frequency. These NCOs can work independently, so they will
not run coherently (Figure 13-12), or in the synchronous mode (Figure 13-11), when TX and RX
work coherently so the phase between the pulse being generated and the one being demodulated
is constant and deterministic. The application shows the received frames (with one pulse each),
its spectrum, and if coherence analysis is activated, the TX to RX pulse phase for all the captured
frames. Coherence analysis is only possible when the DDC is enabled. The frame shown in the
graph can be selected through an MATLAB slider control giving access to any of the individual
frames.

Confidential | 250

@meen ELECTRONICS Proteus Programming Manual Rev.1.4

 Figure 1 - 8 X
Ele [dt Yiew [nset Jooks Deskiop Mindow Help

Deds 2|08k E

CH1 RF Waveform # 1 CH1 Waveform Spectrum
= T T T F T

2000 -

1000

500

|
N m
M \ |

ADC Levels

7 ‘!HWJ
i f
Jl ‘I | | }

. V|

L I I L
- 0 2 4 6 8 10 12 14 16 995 995 997 998 909 1000 1001 1002 1003 1004 1006
microseconds MHz

500

Figure 13-13 Radar pulse analysis of one of the acquired frames when the digitizer works in
the direct (non-DDC) mode. The graph in the left shows the captured pulse including the
carrier information at full sampled rate (without decimation). The one in the right shows the
spectrum of the waveform by performing an FFT on the real data containing the modulated RF
signal. The coherence analysis does not make any sense when the DDC is not used so the
corresponding graph is not shown.

13.5.1 Programming Example 4 includes useful functions as listed below.

e SendlgmOneSeq: Setup Proteus for the IQ ONE mode and format and download | and Q
waveforms for multiple segments at once. It also sets up the corresponding task list as
defined by the user.

e GetDigitizerData: It sets up any number of ADC channels for direct or DDC based
acquisitions and returns the captured waveforms as a bi-dimensional array with N rows and
M columns, where N is the number of captured frames and M the number of samplesin a
frame. Samples are retuned as real numbers for direct acquisition and as complex numbers
for DDC-based acquisitions.

o TasklListSetup: This function creates and configures a complete task list after the contents
of a simple two-dimensional integer array coding all the basic fields for each task in the task
list.

e GetPulseWfms: It automatically defines a modulating pulse and minimizes waveform
memory usage by splitting it in minimum length segments and defining the task list (in a
format compatible with the TaskListSetup function) that implements the right timing.

13.5.1 Programming Example 4

Using the Digitizer to Capture Baseband and RF Signals

Pulse Radar Demo with DUC and DDC

It generates a pulsed RF signal using the DUC and optimizes waveform
memory usage using sequencing. It captures multiple frames of the RF

o® o oe

o°

Confidential | 251

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

% waveform directly or using the DDC (Digital Down Converter). DUC/DDC
% can be synchronized and TX to RX phase drift can be shown in either

It shows all the acquisitions (acquisition # cbe selected usiong an

control) .
clear;

close all;

clear variables;
clear global;
clcy;

o\

Define IP Address for Target Proteus device descriptor

VISA "Socket-Based" TCP-IP Device. Socket# = 5025

ipAddr = '127.0.0.1'; %'127.0.0.1'= Local Host; % your IP here
pxiSlot = 0;

o°

o)

%5 Instrument setup

cType = "LAN"; $"LAN" = VISA or "DLL" = PXI
if cType == "LAN"
connPar = ipAddr;
else
connPar = pxiSlot; % Your slot # here, o for manual
selection
end
paranoia level = 0; % 0, 1 or 2
% Open Session and load libraries
[inst, admin, model, slotNumber] = ConnecToProteus (cType, connPar,

paranoia level);

o

% Report model
fprintf ('Connected to: %s, slot: %d\n', model (1), slotNumber(l)):;

% DDC and DUC activation

o°

use ddc = false; % true = DDC on, false = DDC off
Sync_nco = true; % true = Coherent acqg

get coherence = true; % true = get coherence (only when DDC
on)

use dtr trigger = true; % Digitizer will be triggered by AWG

$AWG Settings

awg_ channel = 1;

segment =1;

awg_sampling rate = 9E+09; % Sampling rate for the target AWG
dac_res = 16; % Default DAC resolution
awg_granularity = 32; % Waveform length granularity

min segment length = 64; % Minimum Segment Size

awg out 1vl = 0.4; % Amplitude level for the AWG

Confidential | 252

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

awg_interpol = 8; % Interolation factor for DUC
apply6db = true; % true = twice the amplitude
% Digitizer Settings
digChannel = 1;
adcRange = 3;
adc_granularity = 48;
adc_resolution = 12;
adc_sampling rate = 2.7E+09; % Overwritten if sync nco = true
num of acquisitions = 1; % Just one set of frames
num of frames = 200; % Number of frames per acquisition
pre trigger = 10; % Size of the pretrigger in % of frame
size
if use ddc

adc_interpol = 1l6; % This is the decimation factor for
DDC
else

adc_interpol =1; % This is the decimation factor for
Direct

get coherence = false; % If no DDC, coherence cannot be
analyzed

sSync_nco = false;
end

fprintf ('RADAR DEMO STARTS\n');

% RF Pulse Parameters
pulse width = 10.0E-6;

oe

Pulse Width

pulse rep frequency = 5.0E+03; % PRI

carrier freqg = 1.0E+09; % Carrier Frequency

num of pulses =1; % Num of pulses in the sequence
% Delay for each digitizer channel

delay = 0.0E-06; % ADC Trigger Delay set to zero

% The Carrier Frequency for the ADC must be an integer submultiple
(x1, x2,
% x4, x8) of the AWG sampling rate. Four (4) 1is selected in this case.
if sync_nco

adc_sampling rate = awg sampling rate / 4;
end

% Frame length calculation for ADC according to pulse width amd
pretrigger

% setting.

frame length = adc sampling rate * pulse width * 1.5;

pre trigger frame length * pre trigger / 100.0;

pre trigger pre trigger / adc_interpol;

pre trigger = round (pre trigger /adc granularity) * adc granularity;
frame length = frame length / adc_interpol;

frame length frame length + 1.5 * pre trigger;

frame length ceil (frame length / adc granularity) * adc granularity;

fprintf ('Reset instrument ..\n');

Confidential | 253

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

inst.SendScpi ('*CLS; *RST');

o)

% Pulse RF Signal Calculation and Download

o°

The final waveform will be generated by a sequence specified in a
task list as follows:

o\

o°

% Task # segment num of repetitions

% TASK1 pulse section 0 or 1

% TASK2 pulse section repeat pulse section - 1
% TASK3 trans_section 0 or 1

% TASK4 off section repeat off section

o\

o°

Depending on the characteristics of the pulsed waveform any of the
Tasks listed above may or not exist. If repeat pulse section = 1,
then TASK3 will not exists. If repeat pulse section = 0, neither

o

o°

task

% nor task 2 will exist and Task 3 will become the first task in the

% list carrying the full pulse. this only happens when duration of the
% pulse is lower than the minimum segment length. Task 3 may not exist
% 1if the overall length of the waveform is a multiple of the minimum

% segment length and the length of the pulse is also a multiple of it.
% Task 4 may bot exist in case Taskl, 2 and 3 already implements the

% complete waveform.

[myWfm, ...

map wfm, ...

task list] = GetPulseWfms(awg sampling rate,

awg_interpol,
awg_granularity,
min segment length,
pulse width,
pulse rep frequency);
% Download all segments, build task list, set up DDC, and activate
task list
result = SendIgmOneSeq (inst, ...
awg_sampling rate, ...
awg_interpol, ...
awg channel, ...
awg out 1vl,...
segment, ...
carrier freq,...
0.0,...
apply6db, ...
myWfm, . ..
map wfm, ...
task list);

Confidential | 254

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

$DIGITIZER SECTION

% Coherent operation of NCOs in DUC and DDC activation if required
if sync_nco
inst.SendScpi (':DIG:DDC:CLKS AWG') ;
end
% Get all frames from digitizer
fprintf ('Acquired Waveforms Upload to Computer Starts\n');

acgWfm = GetDigitizerData(inst,...
cType, ...
true, ...
digChannel, ...
adcRange, ...
use ddc, ...
use dtr trigger, ...
awg_ channel, ...
0,...
0.025, ...
adc_sampling rate, ...
carrier freq,...
frame length, ...
num of frames, ...
pre trigger);

fprintf ('Acquired Waveforms Upload to Computer Ends\n');
% Coherence processing

% One phase value is obtained for each frame so evolution can be
observed

phasel = zeros(l, num of frames);
for i = 1l:num of frames
%$for each acquisition, complex IQ waveforms are extracted
samplesl = acgWfm (i, :);
% Relative amplitude of the I and Q pulses are obtained by
integration
I1 = sum(real (samplesl));
Q1 = sum(imag(samplesl));
% 4 quadrant arctangent is applied to the areas of teh I and Q
pulses
phasel (i) = atan2(Q1,1I1);
end
phasel = unwrap (phasel);
phasel = 180.0 * phasel / pi;

itemToShow = num of frames;

if use ddc
actual pre trigger

else
actual pre trigger = pre trigger;

2 * pre trigger;

end

Confidential | 255

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

[o)

o

Span for spectrum graph

span = 100.0 / pulse width;

o

o

Show data for first frame

ShowResults (use ddc, ...

acqWfm, ...

get coherence, ...
phasel, ...

1,...
actual pre trigger,...
carrier freq,...

span, ...
adc_interpol, ...
adc_sampling rate);

fprintf ('\nRADAR DEMO COMPLETED\n') ;

%

o° Fh

GUI to access all the information about all frames is generated

ig = uifigure('Position', [100 100 350 1001);

Frame is selected using an slider control

sld = uislider(fig, ...

%

o°

'Position', [10 75 300 3], ...

'Limits', [l itemToShow], ...

'ValueChangedFcn', @ (sld,event) ShowResults(use ddc, ...
acqgWfm, . ..
get coherence, ...
phasel, ...
sld.vValue, ...
actual pre trigger, ...
carrier freq,...
span, ...
adc_interpol, ...
adc_sampling rate));

Close the session
It is recommended to disconnect from instrument at the end

if cType == "LAN"

inst.Disconnect () ;

else

admin.CloseInstrument (inst.instId);
admin.Close () ;

end

o° o

o°

KA KA R AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR A A A AR AR AR A A A A A A Ak A A A A A Ak Ak Ak kK

* FUNCTIONS *

KA K AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR A A A AR A A AR A A A A A A Ak A A A A A kA A A Xk kK

function ShowResults (useDdc, ...

acgWfm, ...

Confidential | 256

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

showCoh, ...
phasel, ...
itemToShow, ...
preTrig, ...
cFreq, ...

span, ...
ddcFactor, ...
samplingRateDig)

itemToShow = round(itemToShow) ;
numOfFrames = length (acgWfm(:,1));

if itemToShow < 1
itemToShow = 1;
end

if itemToShow > numOfFrames
itemToShow = numOfFrames;

end

if useDdc

else

cFreq = abs (GetNcoFreqg(cFreq, samplingRateDig, false));
end
samplesl = acqgWfm (itemToShow, :);

if useDdc
else

samplesl = samplesl (l:ddcFactor:length (samplesl));
end

if showCoh
tiledlayout(1,3);
else
tiledlayout(1,2);
end

% Top plot

axl = nexttile;

xData = 0: (length(samplesl) - 1);
xData = xData - preTrig;

xData = xData / samplingRateDig;

if useDdc
xData = xData * ddcFactor;
end

xData = xData * 1e+06;
if useDbDdc

plot (axl, xData, real (samplesl), xData, imag(samplesl));
else

dc_level = mean (samplesl);

plot (axl, xData, samplesl - dc_level);

Confidential | 257

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

end

if useDbDdc

title(axl,sprintf ('CH1 I/Q Waveforms # %d', itemToShow));
else

title(axl,sprintf ('CH1 RF Waveform # %d', itemToShow)) ;
end

xlabel ('microseconds')
ylabel ('ADC Levels')
if useDdc

ylim([-8192 8192]); % 15 bits
else
y1lim([-2048 2048]); % 12Bits

end
grid(axl,'on')

% Mid plot

ax3 = nexttile;

pSpec = abs (fft (samplesl));

if useDdc
pSpec = circshift (pSpec, round(length (pSpec) /2));
startF = - span/2;
stopF = startF + span;

xData = 0: (length(samplesl) - 1);

xData = xData * samplingRateDig / (length (samplesl) *
ddcFactor) ;

xData

xData - xData (round (length (pSpec) /2));

xDatal xData (find (xData >= startF & xData <= stopF));
pSpec = pSpec (find(xData >= startF & xData <= stopF));
pSpec = 20 * 1loglO (pSpec / max (pSpec)):;

xDatal = xDatal / le+06 + cFreq / 1le+06;
else
startF = cFreq - span/2;

stopF = startF + span;

xData = 0: (length(samplesl) - 1);
xData xData * samplingRateDig / length (samplesl);

xDatal xData (find (xData >= startF & xData <= stopF));
pSpec = pSpec (find(xData >= startF & xData <= stopF));
pSpec = 20 * 1loglO(pSpec / max (pSpec)):;

xDatal = xDatal / 1le+06;
end

plot (ax3, xDatal, pSpec);

title (ax3, '"CH1 Waveform Spectrum')

Confidential | 258

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

xlabel ("MHz")
ylabel ('dBR"')
grid(ax3,'on')

if showCoh

% Phase drift and coherence plot
axb = nexttile;

plot (ax5, phasel);

title (ax5,sprintf ('CH1 Coherence Drift = %f, Degrees pp',
max (phasel) - min (phasel)));

xlabel ('# of Acquisition')
ylabel ('Degrees"')
grid(ax5,'on')
end
end

function outWfm = ComplexToInterleaved (wfmIq)
wfmLength = length(wfmIq);
outWfm = zeros(l, 2 * wfmLength);

outWfm(1l:2: (2 * wfmLength - 1)) = real (wfmIqg);
outWfm(2:2: (2 * wfmLength)) = imag(wfmIq)
end

function outWfm = InterleavedToComplex (wfmIq)
wimLength = length (wfmIq);

outWfm = double (wfmIg(l:2:wfmLength)) + 1.01 *
double (wfmIg(2:2:wfmLength)) ;
end

function ncoFreq = GetNcoFreqg(carrierFreq ,samplingRate,
remove second nyquist)
This function maps any frequency to its image in the first or second
Nyquist Zone. Second Nyquist Zone can be excluded when
remove second nyquist is set to 'true'
ncoFreq = abs(carrierFreq);
ncoFreq = mod(ncoFreq, samplingRate);

o° o

o°

if remove second nyquist
if ncoFreq > samplingRate / 2
ncoFreq = samplingRate - ncoFreq;
end
end
end

function wfmData = GetDigitizerData (inst, ...

cType, ...
dualMode, ...
adChan, ...

Confidential | 259

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

range, ...
useDdc, ...
useDtrTrig, ...
dtrChan, ...
dtrDelay, ...
trglevel, ...
samplingRateDig, ...
cFreq, ...
framelLen, ...
numberOfFrames, ...
preTriqg)

o\

ADC Config
It supports up to two channels with different setups

o°

o\

oe

Set the ADC mode and set the channel mapping
if dualMode
inst.SendScpi (':DIG:MODE DUAL') ;
if length(adChan) > 1
adChan = adChan(1:2);
if adChan (1) == adChan(2)
adChan = adChan (1) ;
end
end
else
inst.SendScpi (':DIG:MODE SINGLE') ;

[o)

% Only Channel 1 in Single mode

adChan = 1;
end
adChan (adChan > 2) = 2;
adChan (adChan < 1) = 1;

numOfChannels = length (adChan);
% Free Acquistion Memory and Set sampling rate
inst.SendScpi (':DIG:ACQ:FREE") ;
inst.SendScpi (sprintf (':DIG:FREQ %g', samplingRateDig));
% DDC activation
if useDdc
inst.SendScpi(':DIG:DDC:MODE COMP') ;
for i = l:numOfChannels
% NCO frequency mapped to the first and second NZ
ddcFreq = GetNcoFreqg(cFreg(mod (i, length(cFreq)) + 1),
samplingRateDig, false);
inst.SendScpi ([sprintf (':DIG:DDC:CFR%d ', adChan(i))
num2str (abs (ddcFreq))]) ;
end
end
% Calculate actual frame length depending on the DDC mode
actualFrameLen = framelLen;
if useDdc

actualFramelen = 2 * actualFramelen;

Confidential | 260

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

end

% ADC Range

% 1:LO0W, 2:MED, 3:HIGH
range (range > 2) = 3;
range (range < 2) 1;

for chan = 1l:numOfChannels

Q

% Select digitizer channel:
inst.SendScpi (sprintf (':DIG:CHAN %d', adChan (chan)));

[o)

% Set the voltage-range of the selected channel

switch range (mod(chan - 1, length(range)) + 1)
case 1
inst.SendScpi (':DIG:CHAN:RANG LOW') ;
case 2
inst.SendScpi (':DIG:CHAN:RANG MED') ;
case 3

inst.SendScpi (':DIG:CHAN:RANG HIGH');
end
%Enable acquisition in the selected channel
inst.SendScpi (':DIG:CHAN:STATE ENAB');
% Setup frames layout. Common to both ADC channels.
inst.SendScpi (sprintf (':DIG:ACQ:DEF %d, %d',...
numberOfFrames, actualFramelLen))

% Set channel 1 of the digitizer as its trigger source
% If DTR trigger, it is directed to the designated AWG channel
if useDtrTrig (mod(chan - 1, length (useDtrTrig)) + 1)

[o)

% DTR trigger must be assigned after selecting the target

AWG
% channel as it is a property of the AWG channel and the
ADC
% channel
inst.SendScpi (sprintf (' :INST:CHAN %d', ...
dtrChan (mod (chan - 1, length(dtrChan)) + 1)));
inst.SendScpi (sprintf (':DIG:TRIG:SOURCE TASK%d', ...
dtrChan (mod (chan - 1, length(dtrChan)) + 1)));
% Set DTR trigger Dealy
inst.SendScpi (sprintf (':DIG:TRIG:AWG:TDEL %f',...
dtrDelay));
else
% Level trigger set tup
inst.SendScpi (sprintf (':DIG:TRIG:SOUR CH%d', adChan(i)));
inst.SendScpi (sprintf (':DIG:TRIG:SELF %f', ...
trglevel (mod(chan - 1, length(trglevel)) + 1)));
%0.025
end
% Pretrigger for DDC must be set to double as acquisions are
made

% by IQ pair of samples
if useDdc

actualPreTrig = 2 * preTrig;
else

Confidential | 261

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

been

out

end

o)

actualPreTrig = preTrig;
end

inst.SendScpi (sprintf (':DIG:PRET %d', actualPreTrig));

% Select which frames are filled with captured data
%(all frames in this example)

inst.SendScpi (':DIG:ACQ:FRAM:CAPT:ALL");

% Delete all wfm memory

inst.SendScpi (':DIG:ACQ:ZERO:ALL") ;

% Get ADC wfm format. For informative purposes

resp = inst.SendScpi(':DIG:DATA:FORM?');

resp = strtrim(netStrToStr (resp.RespStr));

% Stop the digitizer

inst.SendScpi (':DIG:INIT OFF'");

[o)

% And start for a new acquisition

wfmData = zeros (numOfChannels, framelLen);
inst.SendScpi (':DIG:INIT ON'");

o)

for

% Read Acquired Wfm Data

i=1:numOfChannels
% Select channel
inst.SendScpi (sprintf (':DIG:CHAN %d', adChan(i)));
% Get acquisition status CSV string from Proteus for selected
% channel
for n = 1:25000

resp = inst.SendScpi (':DIG:ACQ:FRAM:STAT?"'")

resp = strtrim(netStrToStr (resp.RespStr));

resp strtrim(resp);

items = split(resp, ','");

items = str2double (items) ;

[o)

% If item 2 in the CSV string is 'l', then all frames have

% captured
if length(items) >= 3 && items(2) == 1
break
end
% This is just to give some information when trigger times

if mod(n, 10) == 0

fprintf ('%d. %s Time:\n', fix(n / 10), resp);
end
pause (0.1);

end

o°

Define what we want to read

(frames data, frame-header, or both).

% In this example we read the frames-data
inst.SendScpi (':DIG:DATA:TYPE FRAM') ;
inst.SendScpi (':DIG:DATA:SEL ALL');

o

o)

% Read binary block

Confidential | 262

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

o

% Get the size in bytes of the acquisition
resp = inst.SendScpi(':DIG:DATA:SIZE?'");
resp = strtrim(netStrToStr (resp.RespStr));
num bytes = str2double (resp) ;

% upload time will be shown so transfer rate can be compared
fprintf ('ADC Upload Time for %d bytes:\n', num bytes);

if cType == "LAN"
if useDdc
tic;
% DDC data is formatted as 15-bit in a 32-bit unsigned
% integer
samples = inst.ReadBinaryData (':DIG:DATA:READ?',

'uint32');
toc;
samples = int32 (samples) - 16384; % Set zero level
% Convert to complex I + jQ samples
samples = InterleavedToComplex (samples) ;
% Invert spectrum if ddcFreq < 0.0
if ddcFreqg < 0.0
samples = conj (samples);
end
else
tic;
% Direct ADC data is formated as 12-bit samples in 16-
bit
% unsigned integers
samples = inst.ReadBinaryData (':DIG:DATA:READ?',
'uintle') ;
toc;
samples = intl6 (samples) - 2048; % Set zero level
end
else
% For the PXI library, downloads can only handlw 8 or 16-
bit
% unsigned.
if useDdc
% For DDC, because read format is UINT16 we divide
byte

o)

% number by 2
wavlen = floor (num bytes / 2);
% allocate NET array
netArray = NET.createArray('System.UIntl6', wavlen);
% read the captured frame

tic;

res = inst.ReadMultipleAdcFrames(i - 1, 1,
numberOfFrames, netArray);

toc;

assert (res == 0);
% Each 32 sample is now 2 contiguous 16-bit samples
samples = uintl6 (netArray);

% As the first 16-bit samples in the pair is "all
zeros"

Confidential | 263

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

o

% they can be discarded by taking one very two bytes
samples = samples (l:2:1length (samples)) ;

[o)

% cast to matlab vector

samples = intl6 (samples) - 16384; % Set zero level
% Convert to complex I + jQ samples
samples = InterleavedToComplex (samples) ;

[o)

% Invert spectrum if ddcFreqg < 0.0
if ddcFreqg < 0.0
samples = conj (samples);
end
% deallocate the NET array
delete (netArray);
else
wavlen = floor (num bytes / 2);
% allocate NET array
netArray = NET.createArray('System.UIntlé', wavlen);
% read the captured frame
tic
res = inst.ReadMultipleAdcFrames (0, 1, numberOfFrames,
netArray);
toc
assert (res == 0);

samples = uintl6 (netArray) ;
% cast to matlab vector
samples = intl6 (samples) - 2048;
% deallocate the NET array
delete (netArray);
end
end
Ouput data is formatted as a two dimensions array with A x F
rows (A = number of acquisitions, F = number of Frames) and
% FrameLem columns
for j=l:numberOfFrames
wfmData ((i - 1) * numberOfFrames + j,:) = samples(((j-1) *
framelLen + 1):(j * framelen));
end

oo

oo

nd

% Sttop digitizer after all acquisitions and frames for all the
% channels have been captured

inst.SendScpi (':DIG:INIT OFF'");

]

end
function [1inst,...
admin, ...
modelName, ...
sId] = ConnecToProteus(cType,

connStr,
paranoia level)

jo

% Connection to target Proteus

Confidential | 264

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

o\

cType specifies API. "LAN" for VISA, "DLL" for PXI

connStr is the slot # as an integer (0 for manual selection) or IP
dress

as an string

% Paranoia Level add additional checks for each transfer. 0 = no
checks.

% 1 = send OPC?, 2 = send SYST:ERROR?

o\

o°

o°

It returns

inst: handler for the selected instrument

admin: administrative handler

modelName: string with model name for selected instrument (i.e.
"po484M)

% sId: slot number for selected instrument

o° o

o°

pid = feature('getpid');
fprintf (1, '\nProcess ID %d\n',pid);

dll path = 'C:\\Windows\\System32\\TEPAdmin.d1l';
admin = 0;
sId = 0;
if cType == "LAN"
try
connStr = strcat ('TCPIP::',connStr,'::5025::3S0CKET") ;
inst = TEProteusInst (connStr, paranoia level);
res = inst.Connect () ;
assert (res == true);
modelName = identifyModel (inst) ;
catch ME
rethrow (ME)
end
else

asm = NET.addAssembly (dll path);

import TaborElec.Proteus.CLI.*
import TaborElec.Proteus.CLI.Admin.*
import System.*

admin = CProteusAdmin (@OnLoggerEvent) ;
rc = admin.Open () ;
assert (rc == 0);

try
slotIds = admin.GetSlotIds();
numSlots = length(size(slotIds));
assert (numSlots > 0);

% If there are multiple slots, let the user select one
sId = slotIds(1l):;
if numSlots > 1
fprintf ('\n%d slots were found\n', numSlots);
for n = l:numSlots
sId = slotIds(n);

Confidential | 265

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

slotInfo = admin.GetSlotInfo (sId);
if ~slotInfo.IsSlotInUse
modelName = slotInfo.ModelName;
if slotInfo.IsDummySlot && connStr ==
fprintf (' * Slot Number:%d Model %s [Dummy
Slot].\n', sId, modelName) ;
elseif connStr ==
fprintf (' * Slot Number:%d Model %s.\n',
sId, modelName) ;
end
end
end
pause (0.1);
if connStr == 0
choice = input('Enter SlotId '");
fprintf ('\n');
else
choice = connStr;
end
sId = uint32 (choice);
slotInfo = admin.GetSlotInfo (sId);
modelName = slotInfo.ModelName;
modelName strtrim(netStrToStr (modelName)) ;
end

o)

% Connect to the selected instrument

should reset = true;

inst = admin.OpenInstrument (sId, should reset);
instId = inst.InstrId;

catch ME
admin.Close () ;
rethrow (ME)
end
end
end

function result = SendWfmToProteus(inst,...
samplingRate, ...
channel, ...
segment, ...
myWfm, ...
dacRes, ...
initialize)

if dacRes == 16

inst.SendScpi (':TRAC:FORM Ul6"'") ;
else

inst.SendScpi (':TRAC:FORM U8"'") ;
end

$Select Channel
if initialize
inst.SendScpi (':TRAC:DEL:ALL") ;

Confidential | 266

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);
end

inst.SendScpi (sprintf (' :INST:CHAN %d', channel));
inst.SendScpi (sprintf (' :TRAC:DEF %d, %d', segment,
length (myWfm))) ;
% select segmen as the the programmable segment
inst.SendScpi (sprintf (':TRAC:SEL %d', segment));
% format Wfm
% myWfm = myQuantization (myWfm, dacRes, 1);
% Download the binary data to segment
prefix = ':TRAC:DATA 0,"';

if (dacRes==16)
myWfm = uintl6 (myWfm) ;
myWfm = typecast (myWfm, 'uint8');
datalength = 2 * length (myWfm) ;
else
myWfm = uint8 (myWfm) ;
datalength = length (myWfm) ;
end

fprintf ('AWG Download Time for %d bytes:\n', datalLength);

tic;

res = inst.WriteBinaryData (prefix, myWfm);
toc;

assert (res.ErrCode == 0);

if initialize
inst.SendScpi (sprintf (' :SOUR:FUNC:MODE:SEGM %d', segment))
% Output voltage set to MAX
inst.SendScpi (':SOUR:VOLT MAX') ;
% Activate outpurt and start generation
inst.SendScpi (':0UTP ON'") ;

end

result = length (myWfm) ;
end

function TaskListSetup(inst, ...
channel, ...
segment, ...
taskList)

o°

This function defines a complete Task List based in the definitons
defined by the taskList integer uint32 array. The array is NxM,
where N
is the number of entries in the task list being defined and M is the
number of fields specifying the parameters of each tasks. This is
he
defintion of the fields:

o°

o o\

oe (T

o°

Confidential | 267

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

% Number Description
% 1 pointer to segment
% 2 task type: 0: Single, 1: StartSeq, 2: InSeq, 3:
EndSeq
% 3 num of loops task
% 4 num of loops seq
% 5 next task
% 6 dtr trig flag: 0: dtr trigger off, 1: dtr trigger
on
num of tasks = size(taskList, 1);

% Select Channel
inst.SendScpi (sprintf (' :INST:CHAN %d', channel));

% The Task Composer is configured

task

[o)

to handle a certain number of

% entries

inst.SendScpi (sprintf (' :TASK:COMP:LENG %d', num of tasks));

% Then, each task is defined

for

NEXT 1is

task number = l:num of tasks
% Task to be defined is selected
inst.SendScpi (sprintf (' :TASK:COMP:SEL %d', task number));
% The type of task is defined.
switch taskList (task number, 2)
case 0
inst.SendScpi (':TASK:COMP:TYPE SING');
case 1
inst.SendScpi (':TASK:COMP:TYPE STAR');
case 2
inst.SendScpi (':TASK:COMP:TYPE SEQ');
case 3
inst.SendScpi (':TASK:COMP:TYPE END') ;
end

% The action to take after completing the task is defined.
the

% default so sending this command is not mandatory
inst.SendScpi (' :TASK:COMP:DEST NEXT') ;

% Assigns segment for task in the sequence
inst.SendScpi (sprintf (':TASK:COMP:SEGM %d4d',

taskList (task number, 1) + segment - 1));

(

% Assigns task to generate next in the sequence
inst.SendScpi (sprintf (' :TASK:COMP:NEXT1 %d',

(

taskList (task number, 5)));

% Set the Trigger for Digitizer
switch taskList (task number, 6)
case 0
inst.SendScpi (':TASK:COMP:DTR OFF') ;
otherwise
inst.SendScpi (':TASK:COMP:DTR ON') ;
end

Confidential | 268

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

% Num of loops for the current sequence
if taskList (task number, 2) ==
inst.SendScpi (sprintf (' :TASK:COMP:SEQ %d4d',
taskList (task number, 4)));
end

% Num of loops for the current task
inst.SendScpi (sprintf (':TASK:COMP:LOOP %d4',
taskList (task number, 3)));
end

% The task table created with the Composer is written to the
actual task

% table of teh selected channel

inst.SendScpi (':TASK:COMP:WRIT'") ;

fprintf (1, 'SEQUENCE CREATED!\n');

% Select Task Mode for generation

% Start in task #1 (#1 is the default)

inst.SendScpi (':FUNC:MODE TASK');
end

function result = SendIgmOneSeq(inst, ...
samplingRate, ...
interpol, ...
channel, ...
awg out 1vl, ...
segment, ...
cfr, ...
phase, ...
apply6db, ...
myWfm, ...
segMap, . ..
taskList)
% This function handles the dwonload of multiple segments and also the
task
% list to generate them with the task sequencer. Waveform data are
passed as
% concatenated waveforms in a single vector. segMap is a vector with
the
size for each segment so they can be extracted from myWfm. Assigned
segment is always in the order they are defined in the myWfm array
starting with the segment variable. taskList is a two dimensional
rray.
See the TaskListSetup functon for more information

o° o oe

o°

Q

% format Wim

dacRes = 16;

myWfm = NormalIg(myWfm) ;

% myWfm is originally a complex vector
myWfm = ComplexToInterleaved (myWfm) ;
myWfm = myQuantization (myWfm, dacRes, 1);
% Select Channel

o

Confidential | 269

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

inst.SendScpi (sprintf (' :INST:CHAN %d', channel));
% Setup Sclk for initial DUC settings
inst.SendScpi ([':FREQ:RAST ' num2str (2.5E9)1);
% Interpolation factor for I/Q waveforms
switch interpol

case 2

inst.SendScpi (':SOUR:INT X2');

case 4
inst.SendScpi (':SOUR:INT X4');

case 8
inst.SendScpi (':SOUR:INT X8');
end
% DAC Mode set to 'DUC' and IQ Modulation mode set to 'ONE'
inst.SendScpi (':MODE DUC') ;
inst.SendScpi(':IQM ONE') ;
% Set the definitive Sclk
inst.SendScpi ([':FREQ:RAST ' num2str (samplingRate)]);
fprintf (1, sprintf ('DOWNLOADING %d WAVEFORMS: %d samples\n',...
length (segMap) , length (myWfm)));
segMap = 2 * segMap;
pointer wfm = 1;
for k = 1l:1length (segMap)
% For each segment, the right waveform data is selected and
% downloaded
result = SendWfmToProteus(inst,...
samplingRate, ...
channel, ...
k + segment - 1,...
myWfm (pointer wfm: (pointer wfm +
segMap(k) - 1)),...
dacRes, ...
false);
% pointer for next segment data is updated
pointer wfm = pointer wfm + segMap (k) ;
end

fprintf (1, 'WAVEFORMS DOWNLOADED!\n');
% task List setup
TaskListSetup(inst,...
channel, ...
segment, ...
taskList) ;
% Select segment for generation
fprintf (1, 'SETTING AWG OUTPUT\n');
% Output voltage
inst.SendScpi (sprintf (':SOUR:VOLT %d', awg out 1vl));
%inst.SendScpi (':SOUR:VOLT 0.4");

% NCO set-up

Confidential | 270

@meaq ELECTRONICS Proteus Programming Manual Rev.

% 6dB IQ Modulation gain applied
if apply6db
inst.SendScpi (':NCO:SIXD1 ON') ;
else
inst.SendScpi (':NCO:SIXD1 OFF'") ;
end
% NCO frequency and phase setting
inst.SendScpi (sprintf (' :NCO:CFR1 %d', cfr));
inst.SendScpi (sprintf (' :NCO:PHAS1 %d', phase));
% Activate output and start generation
inst.SendScpi (':0UTP ON') ;
end

function outWfm = NormalIg(wfm)

% Normalization to peak modulus
maxPwr = max (abs (wfm)) ;
outWfm = wfm / maxPwr;

end
function retval = myQuantization (myArray, dacRes, minLevel)

maxLevel = 2 »~ dacRes - 1;
numOflLevels = maxLevel - minLevel + 1;

retval = round((numOfLevels .* (myArray + 1) - 1) ./ 2);
retval = retval + minLevel;
retval (retval > maxLevel) = maxLevel;
retval (retval < minLevel) = minLevel;
end
function [myWfm, ...
map wfm, ...
task list] = GetPulseWfms(awg sampling rate,

awg_interpol,
awg_granularity,
min segment length,
pulse width,
pulse rep frequency)
% This function calculates a baseband pulse and creates an optimal
segmentation of the waveform and the corresponding task list to

o°

generate

% the overall pulsed waveform. These requires one, two or three
segments.

% There may be a ON segment, an OFF segment, and a Transition segment.

[o)

% Baseband waveform sample rate

actual sampling rate = awg sampling rate / awg interpol;
awg granularity = awg granularity / 2;

min segment length = min segment length / 2;

% Duration of one complete cycle
total duration = 1.0 / pulse rep frequency;

Confidential | 271

1.4

% Actual Granularity and Minimum Segement Length for complex wfms

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

o

% Wfm length in samples rounde to the actual granularity
awg wfm length = total duration * actual sampling rate;
awg wfm length = awg granularity * floor(awg wfm length /

awg_granularity);

o\

I/Q complex pulse

o°

% Pulse length is samples
pulse length = round(pulse width * actual sampling rate);

Q

% Number of segments with minimum segment length

repeat pulse section = floor(pulse length / min segment length);
% Pulse segment is "all 1s"
pulse section = complex(ones(l, min segment length));

o\

I/Q interval between pulses

o°

oe

Total length for the all zeros section in samples
off section length = awg wfm length - pulse length;
% Number of segments with minimum segment length
repeat off section = floor (off section length /

min segment length);

% Pulse segment is "all 1s"
off section = complex(zeros(l, min segment length));

o°

I/Q transition segment

oe
Il
H
|
|
|

% Total length for the trabsition section in samples
trans section length = awg wfm length -...
min segment length * (repeat pulse section +
repeat off section);
% Number of ones in the transition section
ones_in trans_ section = pulse length -...

repeat pulse section * min segment length;

% Transition segment calculation
if trans section length ~= 0

trans section = complex(zeros(l, trans section length));
if ones in trans section ~= 0
trans section(l:ones_in trans section) = complex(1.0);

end

% Transition length must be corrected in case its length is
shorter

% than the minimum segment length by adding either a pulse or
an

% off segment so the number of reps must be edited
if trans_section length < min segment length
if repeat off section > 0
trans_section = [trans section, off section];
repeat off section = repeat off section - 1;
elseif repeat pulse section > 0
trans section = [pulse section, trans section];
repeat pulse section = repeat pulse section - 1;
end
end

Confidential | 272

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

end
% Meaning of fields in task array
% 1 pointer to segment
% 2 task type: 0: Single, 1: StartSeq, 2: InSeq,
3: EndSeq
% 3 num of loops task
% 4 num of loops seq
% 5 next task
% 6 dtr trig flag: 0: dtr trigger off, 1: dtr
trigger on
% The number of waveforms may be one, two, or three
% The number of tasks may be one, two, three, o four
num of wfms = 0;
myWfm = complex (double.empty) ;
map wfm = uint32.empty;
num of tasks = 0;
if repeat pulse section > 0
num of wfms = num of wfms + 1;
myWfm = [myWfm, pulse section];
map wfm = [map wfm, min segment length];
% If there must be more than one repetition of the pulse
segment,
% there must be an additional task so the DTR trigger happens
only

% once in a waveform cycle.
if repeat pulse section ==
num of tasks = num of tasks + 1;
else
num of tasks = num of tasks + 2;
end
end
if length(trans section) >= 1
num of wfms = num of wfms + 1;
myWfm = [myWfm, trans section];
map wfm = [map wfm, trans section length];
num of tasks = num of tasks + 1;
end
if repeat off section > 0
num of wfms = num of wfms + 1;
myWfm = [myWfm, off section];
map wfm = [map wfm, min segment length];
num of tasks = num of tasks + 1;
end
% Task list two dimensional array is created
task list = uint32(zeros(num of tasks, 6));
% And then populated for proper sequencing, pulse timing, PRI, and
% continuous geneation
task pointer = 1;
segment pointer = 1;

if repeat pulse section > 0

o)

% Pulse segment is always generated once in the first task

Confidential | 273

@meaq ELECTRONICS Proteus Programming Manual Rev.1.4

task list(task pointer, 1) = segment pointer;
task list(task pointer, 2) = 0;
task list(task pointer, 3) = 1;
task list(task pointer, 5) = task pointer + 1;
task list(task pointer, 6) = 1;

task pointer = task pointer + 1;
% If number of repetitions is larger than one, the second task

must
% be added with the number of repetitions - 1 as task #1 takes
care
% of the first repetition
if repeat pulse section > 1
task list(task pointer, 1) = segment pointer;
task list(task pointer, 2) = 0;
task list(task pointer, 3) = repeat pulse section - 1;
task list(task pointer, 5) = task pointer + 1;
task list(task pointer, 6) = 0;
task pointer = task pointer + 1;
end
segment pointer = segment pointer + 1;
end

if length(trans section) >= 1
task list(task pointer, 1) = segment pointer;
task list(task pointer, 2) = 0;
task list(task pointer, 3) = 1;

task list(task pointer, 5) = task pointer + 1;

% Transition segments may be repeated zero or one time. When
there

% 1s no pulse segment, the transition segment will be
generated

% first and it has to generate the DTR trigger

if repeat pulse section ==

task list(task pointer, 6) = 1;
else

task list(task pointer, 6) = 0;
end
task pointer = task pointer + 1;
segment pointer = segment pointer + 1;

end

if repeat off section > 0
% The off segment may be repeated zero or more times
task list(task pointer, 1) = segment pointer;

(
task list(task pointer, 2) = 0;
task list(task pointer, 3) = repeat off section;
task list(task pointer, 5) = 1;
task list(task pointer, 6) = 0;
end
% The last task always point yo task # 1
task list(task pointer, 5) = 1;

end

Confidential | 274

@meeq ELECTRONICS Proteus Programming Manual Rev.1.4

function model = identifyModel (inst)
idnStr = inst.SendScpi ('*IDN?') ;
idnStr = strtrim(netStrToStr (idnStr.RespStr));
idnStr = split(idnStr, ',");

if length(idnStr) > 1
model = idnStr (2);
else
model =""';
end
end

function [str] = netStrToStr (netStr)
try
str
catch
str = '';
end
end

convertCharsToStrings (char (netStr));

Confidential | 275

	Proteus Series Arbitrary Waveform Transceiver Programming Manual
	Document Revision History
	Acronyms & Abbreviations
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Introduction to SCPI
	1.2 Command Format
	1.3 Command Separator
	1.4 MIN and MAX Parameters
	1.5 Querying Parameter Setting
	1.6 Query Response Format
	1.7 SCPI Command Terminator
	1.8 IEEE-STD-488.2 Common Commands and Queries
	1.9 SCPI Parameter Type
	1.9.1 Numeric Parameters
	1.9.2 Discrete Parameters
	1.9.3 Boolean Parameters
	1.9.4 Binary Block Parameters

	1.10 Queries for Commands with Numeric Parameters
	1.10.1 RANGe?
	1.10.2 MIN?
	1.10.3 MAX?
	1.10.4 DEFault?

	1.11 SCPI Syntax and Styles
	1.12 Proteus SCPI Commands

	2 SCPI Commands List Summary
	2.1 Instrument Commands
	2.2 Run Mode Commands
	2.3 Analog Output Control Commands
	2.4 Marker Output Commands
	2.5 Task Commands
	2.6 Scenario Commands
	2.7 Arbitrary Waveform Commands
	2.8 Digitizer Group Commands
	2.9 DSP Commands
	2.10 System Commands
	2.11 SCPI Error List

	3 Instrument Commands
	3.1 :INSTrument:ACTive[:SELect]{1…}(?)
	3.2 :INSTrument:CHANnel[:SELect]{1|2|..12}(?)
	3.3 :INSTrument:CHANnel:OFFSet{1|2|..1024}(?)
	3.4 :INSTrument:COUPle:SKEW<ch_skew>(?)
	3.5 :XINStrument:MODE(?)
	3.6 :XINStrument:SYNChronize:ROLE(?)
	3.7 :XINStrument:SYNChronize:FOLLowers <number_of_follower_instruments>(?)
	3.8 :XINStrument:SYNChronize:OFFSet < inst_offset>(?)
	3.9 :XINStrument:SYNChronize:SKEW< inst_skew>(?)

	4 Run Mode Commands
	4.1 :INITiate:CONTinuous[:STATe]{OFF|ON|0|1}(?)
	4.2 :TRIGger:COUPle[:STATe]{OFF|ON|0|1}(?)
	4.3 :TRIGger:SOURce:ENABle{NONE|TRG1|TRG2|TRG3| TRG4|TRG5|TRG6|INTernal |CPU|FBTRg|HWControl}(?)
	4.4 :TRIGger:SOURce:DISable{NONE|TRG1|TRG2|TRG3| TRG4|TRG5|TRG6|INTernal |CPU|FBTRg|HWControl}(?)
	4.5 :TRIGger[:ACTIVE]:SELect{TRG1|TRG2|TRG3|TRG4| TRG5|TRG6|INTernal}(?)
	4.6 :TRIGger[:ACTIVE]:STATe{OFF|ON|0|1}(?)
	4.7 :TRIGger:CPU:MODE{LOCAL|GLOBAL}(?)
	4.8 :TRIGger:GATE[:STATe]{OFF|ON|1|0}(?)
	4.9 :TRIGger:LEVel<level>(?)
	4.10 :TRIGger:COUNt<cycles>(?)
	4.11 :TRIGger:WIDTh<width>(?)
	4.12 :TRIGger:SLOPe {POSitive|NEGative}(?)
	4.13 :TRIGger:TIMer<time>(?)
	4.14 :TRIGger:IMMediate
	4.15 :TRIGger:MODE{EVENtually|IMMediate}(?)
	4.16 :TRIGger:LTJ[:STATe]{OFF|ON|0|1}(?)
	4.17 :TRIGger:IDLE:[TYPE]{ DC | FIRSt | CURRent }(?)
	4.18 :TRIGger:IDLE:LEVel<level>(?)
	4.19 :TRIGger:PULSe[:STATe]{ OFF|ON|0|1}(?)
	4.20 :TRIGger:PULSe:COUNt< count>(?)
	4.21 :TRIGger:PULSe:COUNt:RESet
	4.22 :TRIGger:DELay<delay>(?)
	4.23 :TRIGger:HOLDoff< holdoff>(?)

	5 Analog Output Control Commands
	5.1 :OUTPut[:STATe]{ OFF | ON | 0 | 1 }(?)
	5.2 [:SOURce]:MODE{ DIRect |NCO | DUC }(?)
	5.3 [:SOURce]:PTRepeat{ X1 | X2 | X4 | X8 }(?)
	5.4 [:SOURce]:INTerpolation{ NONE|X2|X4|X8}(?)
	5.5 [:SOURce]:NCO:MODE{ SINGle|DUAL}(?)
	5.6 [:SOURce]:NCO:CFRequency<1|2> <carr_freq>(?)
	5.7 [:SOURce]: NCO:PHASe<1|2> {<phase in degrees>}(?)
	5.8 [:SOURce]:NCO:SIXDb<1|2>{ OFF|ON|0|1}(?)
	5.9 [:SOURce]:IQModulation {NONE|HALF|ONE|TWO}(?)
	5.10 [:SOURce]:FREQuency[:RASTer]{<sclk>|MINimum| MAXimum}(?)
	5.11 [:SOURce]:FREQuency:SOURce{ INTernal|EXTernal}(?)
	5.12 [:SOURce]:FREQuency:OUTPut[:STATe]{OFF|ON|0|1} (?)
	5.13 [:SOURce]:FUNCtion:MODE[:TYPE] {ARBitrary|TASK}(?)
	5.14 [:SOURce]:FUNCtion:MODE:SEGMent <segment_number>(?)
	5.15 [:SOURce]:FUNCtion:MODE:TASK< task_number>(?)
	5.16 [:SOURce]:ROSCillator:SOURce{ INTernal|EXTernal}(?)
	5.17 [:SOURce]: ROSCillator:FREQuency{ 10M|100M}(?)
	5.18 [:SOURce]:VOLTage[:AMPLitude] {<amplitude>|MINimum|MAXimum}(?)
	5.19 :SOURce]:VOLTage:OFFSet{<offset>|MINimum|MAXimum}(?)

	6 Marker Output Commands
	6.1 :MARKer:SELect{1|2|3|4}(?)
	6.2 :MARKer[:STATe]{OFF|ON|0|1}(?)
	6.3 :MARKer:DELay:COARse <delay>(?)
	6.4 :MARKer:DELay:FINE<delay>(?)
	6.5 :MARKer:VOLTage:LEVel <gain>(?)
	6.6 :MARKer:VOLTage:PTOP<ptop_level>(?)
	6.7 :MARKer:VOLTage:OFFSet<offset>(?)
	6.8 :MARKer:DATA [<offset>]#<header><binary_block>(?)
	6.9 :MARKer:MEMory <offset_in_bytes>,#<header><marker-data>(?)
	6.10 :MARKer:FILE[:NAMe]{<#<header><binary_block>}
	6.11 :MARKer:FILE:OFFSet< start-offset inside the file>(?)
	6.12 :MARKer:FILE:DESTination < SEGMent | MEMory>(?)
	6.13 :MARKer:FILE:LOAD [[<offset>,]<size>]
	6.14 :MARKer:FILE:STORe [[<offset>,]<size>]

	7 Task Commands
	7.1 :TASK:COMPoser:LENGth<length>(?)
	7.2 :TASK:COMPoser:SELect<task_#>(?)
	7.3 :TASK:COMPoser[:DEFine]:TYPE{SINGle|STARt|END| SEQ}(?)
	7.4 :TASK:COMPoser[:DEFine]:LOOPs<task_loops>(?)
	7.5 :TASK:COMPoser[:DEFine]:SEQuence<seq_loops>(?)
	7.6 :TASK:COMPoser[:DEFine]:SEGMent<segment>(?)
	7.7 :TASK:COMPoser[:DEFine]:IDLE[:TYPE] {DC|FIRSt|CURRent}(?)
	7.8 :TASK:COMPoser[:DEFine]:IDLE:LEVel {<DC_level>}(?)
	7.9 :TASK:COMPoser[:DEFine]:ENABle{NONE|TRG1|TRG2|TRG3|TRG4|TRG5|TRG6|INTernal|CPU|FBTRg| ANY}(?)
	7.10 :TASK:COMPoser[:DEFine]:ABORt{ NONE|TRG1|TRG2|TRG3|TRG4|TRG5|TRG6| INTernal|CPU|FBTRg|ANY }(?)
	7.11 :TASK:COMPoser[:DEFine]:JUMP{EVENtually| IMMediate}(?)
	7.12 :TASK:COMPoser[:DEFine]:DESTination{NEXT | FBTRg | TRG | NTSel | SCENario | DSP |DSIG}(?)
	7.13 :TASK:COMPoser[:DEFine]:NEXT1 <next_task>(?)
	7.14 :TASK:COMPoser[:DEFine]:NEXT2 <next_task>(?)
	7.15 :TASK:COMPoser[:DEFine]:DELay<task_delay>(?)
	7.16 :TASK:COMPoser[:DEFine]:KEEP{OFF|ON|0|1}(?)
	7.17 :TASK:COMPoser[:DEFine]:DTRigger{OFF|ON|0|1}(?)
	7.18 :TASK:COMPoser:WRITE<offset in task table rows>
	7.19 :TASK:COMPoser:READ<offset in task table rows>
	7.20 :TASK:CURRent?
	7.21 :TASK: SYNC
	7.22 :TASK:DATA [<offset>]#<header><binary_block>
	7.23 :TASK:FILE[:NAME] {#<header><binary_block>}
	7.24 :TASK:FILE:OFFSet <start-offset>
	7.25 :TASK:FILE:LOAD[<offset>,<num_of_tasks>]
	7.26 :TASK:FILE:STORe[<offset>,<num_of_tasks>]
	7.27 :TASK:ZERO[:PORTion] <offset>,<num_of_tasks>
	7.28 :TASK:ZERO:ALL

	8 Scenario Commands
	8.1 :SCENario:DEFine { <scenario-number>, <task-number>, <loops>}(?)
	8.2 :SCENario:DATA {[<offset>,]#<header><binary_block>}
	8.3 :SCENario:FILE[:NAME]{ #<header><binary_block>}
	8.4 :SCENario:FILE:OFFSet {<offset>}
	8.5 :SCENario:FILE:LOAD {[<offset>,<num_of_scenarios>]}
	8.6 :SCENario:FILE:STORe {[<offset>,<num_of_scenarios>]}
	8.7 :SCENario:ZERO[:SINGLe] <scenario-number>
	8.8 :SCENario:ZERO:ALL

	9 Arbitrary Waveform Commands
	9.1 :TRACe[:DATA](?) [<offset>]#<header><binary_block>
	9.2 :TRACe:FORMat{ <U16 | U8>}(?)
	9.3 :TRACe:MEMory(?)< offset_in_wave-points>#<header><wave-data>
	9.4 :TRACe:SEGMents[:DATA] [<first segment number>,]#<header><binary_block>
	9.5 :TRACe:SEGMents:FILE[:NAMe] #<header><binary_block>
	9.6 :TRACe:SEGMents:FILE:OFFSet <offset in bytes>(?)
	9.7 :TRACe:SEGMents:FILE:LOAD[[<first segment number>,],<number of segments>]
	9.8 :TRACe:FILE[:NAME]#<header><binary_block>
	9.9 :TRACe:FILE:OFFSet< offset in bytes>(?)
	9.10 :TRACe:FILE:DESTination{SEGMent | MEMory}(?)
	9.11 :TRACe:FILE:LOAD[<offset>,<size in wave-points>]
	9.12 :TRACe:FILE:STORe[<offset>,<size>]
	9.13 :TRACe:STReaming:MODE {FILE|DYNamic}(?)
	9.14 :TRACe:STReaming:STATe{OFF|ON|0|1}(?)
	9.15 :TRACe:DEFine[:SIMPle] [<seg_number>,]<seg_length>(?)
	9.16 :TRACe:DEFine:LENGth?
	9.17 :TRACe:ZERO[:SEGMent] [<segment number>]
	9.18 :TRACe:ZERO:ALL
	9.19 :TRACe:DELete[:SEGMent] <seg-number>
	9.20 :TRACe:DELete[:SEGMent]:ALL
	9.21 :TRACe:SELect[:SEGMent] <seg_number>(?)
	9.22 :TRACe:SELect:SOURce{ BUS | EXTernal | ADC | DCT }(?)
	9.23 :TRACe:SELect:TIMing{ EVENTually|IMMediate}(?)
	9.24 :TRACe:FREE?
	9.25 :TRACe:FRAG?
	9.26 :TRACe:DEFRag

	10 Digitizer Commands
	10.1 :DIGitizer:[:SELect]{ DIG1|DIG2}(?)
	10.2 :DIGitizer:MODE{DUAL|SINGle}(?)
	10.3 :DIGitizer:CHANnel[:SELect]{ CH1|CH2}(?)
	10.4 :DIGitizer:CHANnel:STATe{ DISabled|ENABled}(?)
	10.5 :DIGitizer:CHANnel:RANGe{ HIGH|MEDium|LOW}(?)
	10.6 :DIGitizer:CHANnel:OFFSet< offset_level >(?)
	10.7 :DIGitizer:DDC:MODE{REAL|COMPlex}(?)
	10.8 :DIGitizer:DDC:DECimation{ NONE | X1| X4 | X16}?
	10.9 :DIGitizer:DDC:BIND{ OFF | ON |0 |1 }(?)
	10.10 :DIGitizer:DDC:CFRequency<1|2> <carr_freq>(?)
	10.11 :DIGitizer:DDC:PHASe<1|2> {<phase in degrees>}(?)
	10.12 :DIGitizer:DDC:CLKSource{ DIG|AWG}(?)
	10.13 :DIGitizer:ACQuire[:FRAMes]:DEFine<num_of_frames><frame_length> (?)
	10.14 :DIGitizer:ACQuire[:FRAMes]:FREE
	10.15 :DIGitizer:ACQuire[:FRAMes]:CAPTure[:SELECT]<1st frame>,<num-frames> (?)
	10.16 :DIGitizer:ACQuire:[FRAMES]:CAPTure:ALL
	10.17 :DIGitizer:ACQuire[:FRAMes]:MARKer{OFF|ON|0|1}(?)
	10.18 :DIGitizer:ACQuire:STATus?
	10.19 :DIGitizer:ACQuire:AVERage:STATe{ OFF | ON |0 |1 }(?)
	10.20 :DIGitizer:ACQuire:AVERage:COUNt<# frames to average>
	10.21 :DIGitizer:ACQuire:ZERO[:SELect]<1st frame>,<num frames>,<fill value>
	10.22 :DIGitizer:ACQuire:ZERO:ALL <fill value>
	10.23 :DIGitizer:FREQuency[:RASTer]{<sclk>|MAXimum| MINimum}(?)
	10.24 :DIGitizer:FREQuency:SOURce{INTernal|EXTernal}(?)
	10.25 :DIGitizert:INITiate[:STATE]{OFF|ON|0|1}(?)
	10.26 :DIGitizer:TRIGger[:IMMediate]
	10.27 :DIGitizer:TRIGger:SOURce{ CPU|EXT|CH1|CH2| TASK1|TASK2|TASK3|TASK4|MR1|MF1|MR2| MF2}(?)
	10.28 :DIGitizer:TRIGger:LEVel<1|2>{<trigger_level>}(?)
	10.29 :DIGitizer:TRIGger:SELF[:LEVel]<trigger_level>(?)
	10.30 :DIGitizer:TRIGger:TYPE{ EDGE | GATE | WEDGe | WGATe | CUSTom }(?)
	10.31 :DIGitizer:TRIGger:CONDition{ GREater|SHORter}(?)
	10.32 :DIGitizer:TRIGger:SLOPe{ POS | NEG }(?)
	10.33 :DIGitizer:TRIGger:WINDow:STARt { <threshold-level index (1/2)>, POSitive | NEGative }(?)
	10.34 :DIGitizer:TRIGger:WINDow:STOP { <thrshold-level index (1/2)>, POSitive | NEGative }(?)
	10.35 :DIGitizer:TRIGger:WIDTh<trigger_event_width>(?)
	10.36 :DIGitizer:TRIGger:HOLDoff< holdoff_time>(?)
	10.37 :DIGitizer:TRIGger:DELay[:EXTernal]<delay_time>(?)
	10.38 :DIGitizer:TRIGger:AWG:TDELay<task-trigger delay>(?)
	10.39 :DIGitizer:PRETrigger< pre-trigger length in samples>(?)
	10.40 :DIGitizer:DATA:TYPE< FRAMes | HEADers | BOTH >(?)
	10.41 :DIGitizer:DATA:SELect < ALL | FRAMes | CHUNk>(?)
	10.42 :DIGitizer:DATA:FRAMes <1st-frame>,<num-frames>(?)
	10.43 :DIGitizer:DATA:CHUNk <frame-no>,<offset in samples>,<read size in samples>(?)
	10.44 :DIGitizer:DATA:READ(?)
	10.45 :DIGitizer:DATA:SIZE(?)
	10.46 :DIGitizer:DATA:FNAMe #<header><file-path as binary data>
	10.47 :DIGitizer:DATA:STORe <offset>
	10.48 :DIGitizer:DATA:FORMat { <U16 | F32 | F64}(?)
	10.49 :DIGitizer:LOOPback[:STATe]{ OFF|ON|0|1}(?)
	10.50 :DIGitizer:LOOPback:DELay< delay>(?)
	10.51 :DIGitizer:LOOPback: SYNC
	10.52 :DIGitizer:LOOPback:IQRotation< scale>,<phase>(?)
	10.53 :DIGitizer:LOOPback:OVERflow(?)
	10.54 :DIGitizer:PULSe[:DEFine] {<INTernal | EXTernal>,<FIXed | GATed>,<window_width(?)
	10.55 :DIGitizer:PULSe:COUNt?

	11 Digital Signal Processing Commands
	11.1 Introduction DSP
	11.2 :DSP:STORe{ DIRect | DSP | FFTOut }(?)
	11.3 :DSP:IQDemod:SELect{ DBUG | IQ4 | IQ5 | IQ6 | IQ7 | IQ8 | IQ9 | IQ10 | IQ11 | IQ12 | IQ13 }(?)
	11.4 :DSP:IQDemod:KERnel:COEFficient <sample number>,<real>,<imaginary>(?)
	11.5 :DSP:IQDemod:KERnel:DATA#<header><binary_block>(?)
	11.6 :DSP:FIR:SELect{ I1 | Q1 |I2 | Q2 |DBUGI | DBUGQ}(?)
	11.7 :DSP:FIR:BYPass{OFF|ON|0|1}(?)
	11.8 :DSP:FIR:LENGth(?)
	11.9 :DSP:FIR: COEFficient <tap number>,<the value of the specified tap>(?)
	11.10 :DSP:FIR:DATA#<header><binary_block>(?)
	11.11 :DSP:FFT:INPut{ IQ1 | IQ2 |DBUG }(?)
	11.12 :DSP:MATH:OPERation{ MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3 |MI4 |MQ4 | MI5 |MQ5 | MI6 |MQ6 | MI7 | MQ7 | MI8|MQ8 | MI9 |MQ9 | MI10 |MQ10 ,<SCALe>,<OFFSet> }(?)
	11.13 :DSP:MATH:OPERation:CLIP(?)
	11.14 :DSP:MATH:XCORrelation:LENGth<N>(?)
	11.15 :DSP:MATH:XCORrelation:SIGNal{ <MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3 |MI4 |MQ4 | MI5 |MQ5 | MI6 |MQ6 | MI7 | MQ7 | MI8|MQ8 | MI9 |MQ9 | MI10 |MQ10 }(?)
	11.16 :DSP:MATH:RAVG { MI1 | MQ1 | MI2 | MQ2 | MI3 | MQ3 |MI4 |MQ4 | MI5 |MQ5 | MI6 |MQ6 | MI7 | MQ7 | MI8|MQ8 | MI9 |MQ9 | MI10 |MQ10 |XC,<N> }(?)
	11.17 :DSP:DECision[:FEEDback]:MAPping{ <awg channel number>,DEC1 | DEC2| DEC3 | DEC4 | DEC5 | DEC6 | DEC7 | DEC8 | DEC9 | DEC10 | XC } (?)
	11.18 :DSP:DECision[:FEEDback]:CONDition{<awg-channel number>, S1 | S2 |S3 | S4 | S5 | S6 | S7 | S8, <segment number>}(?)
	11.19 :DSP:DECision:FRAMe<the frame size for the calculation>(?)
	11.20 :DSP:DECision:IQPath:SELect { DSP1 | DSP2 | DSP3 | DSP4| DSP5| DSP6| DSP7| DSP8| DSP9| DSP10 }(?)
	11.21 :DSP:DECision:IQPath:OUTPut{ THR | SVM }(?)
	11.22 :DSP:DECision:IQPath:THReshold:LEVel { <N> }(?)
	11.23 :DSP:DECision:IQPath:THReshold:INPut { I | Q }(?)
	11.24 :DSP:DECision:IQPath:LINE{ 1 | 2 | 3, <slope>, <y-intercept>}(?)
	11.25 :DSP:DECision:IQPath:CLIP(?)
	11.26 :DSP:DECision:XCORrelation: THReshold { <N> }(?)
	11.27 :DSP:DECision:XCORrelation:CLIP(?)

	12 System Commands
	12.1 :SYSTem:LOG[:VERBose] {0|1|2|3|4|5|6}(?)
	12.2 :SYSTem:ERRor?
	12.2.1 Error list

	12.3 :SYSTem:INFormation:CALibration?
	12.4 :SYSTem:INFormation:MODel?
	12.5 :SYSTem:INFormation:SERial?
	12.6 :SYSTem:INFormation:HARDware?
	12.7 :SYSTem:INFormation:FPGA:VERsion?
	12.8 :SYSTem:INFormation:FPGA:DATE?
	12.9 :SYSTem:INFormation:FIRMware:VERsion?
	12.10 SYSTem:INFormation:FIRMware:DATE?
	12.11 :SYSTem:INFormation:DAC?
	12.12 :SYSTem:INFormation:SLOT?
	12.13 SYSTem:INFormation:SCPI[:VERSion]?
	12.14 :SYSTem[:MEASure]:TEMPerature?
	12.15 :SYSTem[:MEASure]:HTPeak?
	12.16 :SYSTem[:MEASure]:LTPeak?
	12.17 :SYSTem[:MEASure]:VINTernal?
	12.18 :SYSTem[:MEASure]:VAUXiliary?
	12.19 :SYSTem:FILE:CATalog?
	12.20 :SYSTem:FILE[:NAMe]{< #<header><binary-block>}
	12.21 :SYSTem:FILE:SIZE?
	12.22 :SYSTEM:FILE:DATA[<offset>,]#<header><binary_block>(?)
	12.23 :SYSTEM:FILE:DELete

	13 Appendix Proteus SCPI MATLAB Script Examples
	13.1 Introduction
	13.2 Opening a Session with Proteus
	13.2.1 Programming Example 1

	13.3 Generating a Waveform in Multiple Channels
	13.3.1 Programming Example 2

	13.4 Using the DUC Mode to Generate RF Signals
	13.4.1 Programming Example 3

	13.5 Using the Digitizer to Capture Baseband and RF Signals
	13.5.1 Programming Example 4

